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Abstract

A semigroup S is called F -monoid if S has an identity and if there
exists a group congruence ρ on S such that each ρ-class of S contains a
greatest element with respect to the natural partial order of S ≤S (see
[7]). Generalizing results given in [4] and specializing some of [3] five
characterizations of such monoids S are provided. Three unary operations
∗, ◦ and − on S defined by means of the greatest elements in the different
ρ-classes of S are studied. Using their properties a charaterization of F -
monoids S by their regular part S◦ = {a◦|a ∈ S} and the associates of
elements in S◦ is given. Under the hypothesis that S∗ = {a∗|a ∈ S} is a
subsemigroup it is shown that S is regular, whence of a known structure
(see [4]).

1 Introduction and summary

A semigroup S is called F -monoid if S has an identity and if there exists a
group congruence ρ on S such that each ρ-class of S admits a greatest element
with respect to the natural partial order ≤S on S (see [7]):

a ≤S b if and only if a = xb = by, xa = a for some x, y ∈ S.

This concept generalizes that of an F -regular semigroup (see [4]; note that the
latter are necessarily monoids) and is a particular case of an F -semigroup (see
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[3]). All these notions are special instances of generalized F -semigroups (see
[2]). These are semigroups S, on which there exists a group congruence ρ such
that the identity ρ-class (only) admits a greatest element with respect to ≤S ,
the pivot of S. It was noted in [2], that the congruence ρ is equal to the least
group congruence on S, whence is uniquely determined. Also, every generalized
F -semigroup S is E-inversive, that is, for any a ∈ S there exists some x ∈ S
such that ax ∈ ES (see [9], [10]). If S has an identity then S is E-unitary, i.e.,
if e, ea ∈ ES or e, ae ∈ ES then a ∈ ES (see[2]). Therefore, we are dealing with
particular E-inversive, E-unitary monoids. The existence of an identity element
in a semigroup S has a strong impact on the structure of S. This observation is
again corroborated in the theory of F -monoids (compared with F -semigroups).

In Section 2, several examples of non-regular F -monoids are given. In par-
ticular, it is shown that adjoining an identity to an F -semigroup does not yield
an F -monoid, in general. A necessary and sufficient condition for this to hold is
given. In Section 3, the following characterizations of F -monoids are presented:
(i) by residuation of the identity, (ii) by the subsets T (a) = {x ∈ S : axa ≤S a},
a ∈ S, (iii) by the maximal elements of (S,≤S) and (iv) by means of an ad-
ditional unary operation satisfying certain axioms. Here a new description of
E-inversive semigroups proves useful. Three unary operations ∗ and ◦ (already
defined in [4]) and − are considered in Section 4. Several properties of them are
proved which are used in the following. In particular, it is shown that for an F -
monoid S, the set S◦ = {a◦ ∈ S|a ∈ S} forms an F -regular subsemigroup of S
(the structure of which was studied in [4]). In Section 5, by means of the regular
part S◦ of an F -monoid S a characterization of F -monoids is given observing
that S consists of the associates of elements in S◦. Concerning the second un-
ary operation ∗, the set S∗ = {a∗ ∈ S|a ∈ S} does not form a subsemigroup,
in general (see [4]). If this is the case then S is called an F -∗-monoid; this
class of monoids is considered in Section 6. It turns out that an F -∗-monoid is
necessarily regular, whence by [4] of a known structure.

2 Examples

(1) Every regular F -semigroup is an F -monoid (by [2], Theorem 3.14). The
class of F -regular semigroups was studied in [4] where also a representation
theorem was proved. Hence in the following, only non-regular F -monoids will
be considered. On the other hand, there are F -semigroups without identity: let
S = {0, 1, a} be the inflation (see [11]) of the semilattice Y : 0 <Y 1, where
a2 = a · 1 = 1 · a = 1 and a · 0 = 0 · a = 0; then S is an F -semigroup without
identity and with pivot ξ = a (by [2], Theorem 3.5). See also the semigroups
given in Remark (3) following Corollary 6.2 in [3].

(2) Let S = [Y ;Sα, ϕα,β ] be a strong semilattice of trivially ordered monoids
such that: (a) (Y,≤Y ) is a finite chain, (b) each ϕα,β is injective, (c) for every
a ∈ S, a ∈ Sα say, there exist β ≤Y α and x ∈ Sβ with (aϕα,β) x ∈ ESβ

. Then
conditions (i) and (ii) in Corollary 6.6 of [3] are evidently satisfied; also (iii)
holds: let a, b ∈ S be maximal in (S,≤S), a ∈ Sα, b ∈ Sβ say. If α = β then
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aϕα,γ 6= bϕβ,γ for every γ ≤Y α = β by (b). If α 6= β then α <Y β, say. Assume
that aϕα,γ = bϕβ,γ for some γ ≤Y α <Y β.Then aϕα,γ = b (ϕβ,α ◦ ϕα,γ) =
(bϕβ,α) ϕα,γ , whence by (b), a = bϕβ,α. Therefore a <S b (see [8], proof of
Theorem 3.8) and a ∈ S is not maximal in (S,≤S): contradiction.

It follows that S is an F -monoid with 1ω ∈ Sω as the identity where ω
denotes the greatest element of (Y,≤Y ) - note that by the trivial order of Sα

(α ∈ Y ), ESα = {1α} whence 1ωϕω,α = 1α. If at least one Sα (α ∈ Y ) is not a
group then S is not regular: assume that a ∈ Sα does not have a group-inverse
in Sα, but a = axa for some x ∈ S, x ∈ Sβ say; then a = axa ∈ Sαβ , whence
α = αβ, i.e., α ≤Y β. Therefore a = a (xϕβ,α) a = aya for y = xϕβ,α ∈ Sα.
Since ESα

= {1α} it follows that ay = ya = 1α: contradiction. Note that by
[8], Corollary 3.9, ≤S is compatible with multiplication.

Remarks. (i) Condition (c) is satisfied for example if Sµ is a group where
µ denotes the least element of (Y,≤Y ).

(ii) If condition (c) is replaced by: ”each Sα with α 6= ω in (Y,≤Y ) is E-
inversive” then each Sα (α 6= ω) is a group. In fact, ESα

= {1α} then implies
that for any a ∈ Sα there exists x ∈ Sα such that ax = 1α. Thus choosing for Sω

a trivially ordered monoid, which is not a group, we shall obtain a non-regular
F -monoid.

(iii) Examples of trivially ordered monoids are (N, ·) or (N0,+), more ge-
nerally, all cancellative monoids. Constructions of trivially ordered monoids
were given in [6].

(iv) In (2), S can be replaced by a monoid, which is a strong semilattice
of trivially ordered semigroups satisfying (a), (b) and (c) - see Remark 3 to
Corollary 3.9 in [8].

As a particular case of (2) we mention
(3) Let S = [Y ;Sµ, Sω;ϕω,µ] where Y : µ <Y ω, Sµ = G is a group, Sω = T

is a subsemigroup of G, which is not a subgroup and which contains the identity
1G ∈ G, and with ϕω,µ : Sω → Sµ, aϕω,µ = a, the inclusion mapping. Since
both Sµ and Sω are trivially ordered it follows by (2), that S
is a non-regular F -monoid with identity 1G ∈ T . Note that Sµ = G has to
be infinite. If there exists an element a ∈ G of infinite order one may take
Sω = T =

{
1G, a, a2, ...

}
. For example: Sµ = (Z,+), the group of integers, and

Sω = (N0,+), the semigroup of natural numbers including 0.
Generalizing Sµ = G to a Clifford semigroup we obtain
(4) Let S0 = [Y ;Gα, ϕα,β ] be a Clifford semigroup which is an F -semigroup

(see [3], Corollary 6.7), and with Y finite. Let ω ∈ Y be the greatest element
of (Y,≤Y ) and let S1 = T be a subsemigroup of Gω which is not a subgroup
and which contains 1ω ∈ Gω. Then S = [Z;Gα, S1;ϕα,β , ϕ1,α] with Z = Y 1,
ϕ1,ω : S1 → Gω, aϕ1,ω = a, the inclusion mapping, and ϕ1,α = ϕ1,ω ◦ ϕω,α

for any α ∈ Y , is a strong semilattice of trivially ordered monoids S1 and Gα

(α ∈ Y ). Again conditions (i) and (ii) in Corollary 6.6 of [3] are satisfied; also
(iii) holds:

Let a, b ∈ S be maximal in (S,≤S). If a, b ∈ S0 then a ∈ Gα, b ∈ Gβ say,
and aϕα,γ 6= bϕβ,γ for any γ ≤Y α = β, by [3], Corollary 6.7. If a, b ∈ S1

then aϕ1,ω 6= bϕ1,ω (since ϕ1,ω is injective). Since by [2], Corollary 4.7, ϕω,γ is
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injective for any γ ∈ Y , it follows that aϕ1,γ = (aϕ1,ω) ϕω,γ 6= (bϕ1,ω) ϕω,γ =
bϕ1,γ . Finally, if a ∈ S1 and b ∈ S0 then b ∈ Gα say (α ∈ Y ). Assume that
aϕ1,γ = bϕα,γ for some γ ≤Y α <Y 1. Then (aϕ1,α)ϕα,γ = bϕα,γ , hence
aϕ1,α = b (since ϕα,γ is injective, see [3], Proposition 6.4). Therefore b <S a
(see [8], proof of Theorem 3.8), which contradicts the maximality of b ∈ S0.

It follows that S is a non-regular F -monoid whose identity is 1ω ∈ S1 (see
Example (2)).

If a semigroup S has no identity then adjoining one we obtain a monoid S1.
If S is an F -semigroup this procedure does not yield an F -monoid, in general,
as the following result shows.

Proposition 2.1 Let S be an F -semigroup. Then S1 is an F -monoid if and
only if the pivot of S is idempotent.

Proof. Necessity. Let ρ (resp. σ) be the defining group congruence on S
(resp. on S1). By the uniqueness of ρ ([2], Theorem 3.6) the restriction of σ
to S (being a group congruence) is equal to ρ. Since 1 is idempotent, 1 ∈ S1

belongs to the identity σ-class Iσ of the group S1/σ; hence Iσ = Iρ ∪ {1}. By
[2], Corollary 3.9, Iρ = ES or Iρ = ES ∪ {a} with a /∈ ES . Assume that the
pivot ξ of S is not idempotent. Then the elements ξ = a ∈ Iρ ⊆ Iσ and 1 ∈ Iσ

are incomparable with respect to ≤S1 : if ξ <S1 1 then ξ ∈ ES (by [8], Lemma
2.1), a contradiction; 1 <S1 ξ is impossible by Lemma 3.1, below. Therefore,
the σ-class Iσ of S1 has no greatest element, a contradiction.

Sufficiency. Let ρ be the corresponding group congruence on S. By [2],
Corollary 3.9, the identity ρ-class I of S is either ES or ES ∪ {a} with a /∈ ES ,
the greatest element of I. By hypothesis, the pivot ξ of S is idempotent, whence
I = ES . Let σ be the equivalence relation on S1 given by the partition ρ on
S but with 1σ = I ∪ {1}. Then σ is a congruence on S1. Only the case eσ1,
x ∈ S, e ∈ ES = I, has to be considered: in the group S/ρ, I = eρ is the identity
element hence (ex) ρ = (eρ) (xρ) = xρ and exρx, thus also exσx; similarly xeσx.
Evidently, S1/σ is a group, whose identity element 1σ = ES ∪ {1} = ES1 has
1 ∈ S1 as greatest element. All the other σ-classes of S1 are equal to the ρ-
classes of S, thus admit each a greatest element with respect to ≤S , whence
also with respect to ≤S1 . Therefore, S1 is an F -monoid.

This result allows the construction of further examples of F -monoids. Let
T be a semigroup; for every α ∈ T let Tα be any set with Tα ∩ T = {α} and
Tα ∩ Tβ = ∅ for all α 6= β. Then S = ∪

α∈T
Tα forms a semigroup with respect to

the operation
a · b = αβ if a ∈ Tα, b ∈ Tβ ,

called an inflation of T (see [11]). S is a proper inflation of T if Tα 6= {α} for at
least one α ∈ T . Note that a proper inflation S of T can not have an identity
since for a ∈ Tα, a 6= α, we would have a1S ∈ T , but a /∈ T . Also S is not
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regular, since axa ∈ T for any x ∈ S- but a /∈ T . Finally, ES = ET since x2 ∈ T
for any x ∈ S. Specializing T we obtain

(5) Let T = G be a group and S = ∪
g∈G

Tg be a proper inflation of G, such

that |Tg| ≤ 2 for every g ∈ G, g 6= 1G, and T1G
= {1G}. Then by [3], Corollary

6.2, S is an F -semigroup with pivot ξ = 1G ∈ ES (note that 1G is the unique
idempotent of S and that 1G is maximal in (S,≤S) : see Lemma 3.1, below).
It follows by Proposition 2.1, that S1 is an F -monoid (with pivot ξ = 1). Note
that ≤S is compatible with multiplication since ≤G= idG is so (see [8]).

More generally we have
(6) Let T be an F -semigroup such that for every α ∈ T there exist β, γ ∈ T

with α = βα = αγ, and with pivot ξ ∈ ET (the greatest idempotent of T ). Let
S = ∪

α∈T
Tα be a proper inflation of T such that |Tµ| ≤ 2 for every maximal

µ ∈ T and |Tα| = |Tξ| = 1 for every non-maximal α ∈ T . Then by [3], Theorem
6.1, S is an F -semigroup with pivot ξ ∈ ET . It follows by Proposition 2.1, that
S1 is an F -monoid (with pivot ξ = 1). Examples for T are: groups (see Example
(5)); bands with identity, more generally F -regular semigroups (see [4]) - in any
of these cases, ξ = 1T ∈ ET . Note that ≤S is compatible with multiplication if
and only if ≤T is so (see [8]).

3 Characterizations

A general theory of F -semigroups was developed in [3]. Specializing to the case
that an identity exists, we obtain the following characterizations of F -monoids.
First we give a direct proof of a useful result on the pivot.

Lemma 3.1 If S is a monoid then 1S is a maximal element in (S,≤S). In
particular, if S is a generalized F -monoid then the pivot ξ of S is 1S.

Proof. If 1S ≤S a for some a ∈ S then 1S = xa = x1S = x for some x ∈ S,
hence 1S = a.

If S is a generalized F -monoid with pivot ξ then the identity ρ-class I of S
is of the form I = (ξ]. Since 1S ∈ ES and ρ is a group congruence, it follows
that 1S ∈ I, whence 1S ≤S ξ and 1S = ξ.

We begin with the more general situation of generalized F -monoids (see [2],
Corollary 3.12).

Proposition 3.2 Let S be a monoid. Then S is a generalized F -semigroup if
and only if S is E-inversive and E-unitary.

The first characterization of F -monoids was given in [3], Theorem
4.5, describing them as particular E-inversive semigroups in terms of the natural
partial order:

Theorem 3.3 Let S be a monoid. Then S is an F -monoid if and only if for
every a ∈ S there exists a greatest element x ∈ S (with respect to ≤S) such that
ax ∈ ES.
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Note that by [11], Exercise I.7(14), a semigroup S such that for any a ∈ S
there is a unique x ∈ S with ax ∈ ES , is a group (hence an F -monoid - see [3]).
The second characterization is tightly connected with that of Theorem 3.3:

Theorem 3.4 Let S be a monoid. Then S is an F -monoid if and only if
the identity 1S ∈ S is right (left ; equi ) residuated, i.e., for every a ∈ S,
max {x ∈ S|ax ≤S 1S} = 1S .·a exists ( max {x ∈ S|xa ≤S 1S} = 1S

·.a exists;
both exist and are equal: 1S

·.a = 1S .·a).

Proof. Necessity. By Lemma 3.1, ξ = 1S . Thus the statement follows from
[3], Theorem 3.5.

Sufficiency. Let a ∈ S and let x0 ∈ S be the greatest element of all x ∈ S
such that ax ≤S 1S . Since by [8], Lemma 2.1:

{x ∈ S|ax ≤S 1S} = {x ∈ S|ax ∈ ES} ,

x0 ∈ S is the greatest element in S such that ax0 ∈ ES . It follows by Theorem
3.3, that S is an F -semigroup.

The third characterization uses the sets T (a) = {x ∈ S|axa ≤S a}, a ∈ S.
By means of these sets, first we provide a description of the ρ-classes of an
F -monoid, more generally of an F -semigroup with regular pivot.

Proposition 3.5 Let S be an F -semigroup with regular pivot ξ. Then for any
a ∈ S, (aρ)−1 = T (a).

Proof. Let a ∈ S. If x ∈ T (a), then axa ≤S a. Applying the natural homo-
morphism of S onto G = S/ρ we obtain (axa) ρ = aρ. Thus (aρ) (xρ) (aρ) = aρ

so that by cancellation in G, (aρ) (xρ) = 1G and xρ = (aρ)−1, i.e., x ∈ (aρ)−1.
Conversely, let x ∈ (aρ)−1. Then xρ = (aρ)−1 and (ax) ρ = (aρ) (xρ) = 1G =
(ξ], i.e., ax ≤S ξ. Since ξ ∈ S is regular, ξ ∈ ES by [2], Proposition 3.13. It
follows by [8], Lemma 2.1, that ax ∈ ES too. Hence axa = ax ·a = a ·xa implies
that axa ≤S a, i.e., x ∈ T (a).

Remark. There are non-regular F -semigroups with regular pivot - see Ex-
ample (5) in Section 2.

Since by Lemma 3.1, for an F -monoid S the pivot ξ = 1S is regular we
obtain

Corollary 3.6 Let S be an F -monoid. Then for any a ∈ S, (aρ)−1 = T (a)
and max T (a) exists in (S,≤S).

We will show now that this last property of a monoid S is also sufficient for S
to be an F -semigroup. By Theorem 3.3 in [4], a generalized F -semigroup S with
regular pivot is an F -semigroup if and only if max T (a) exists for any a ∈ S. In
order to apply Proposition 3.2, which describes generalized F -monoids, we first
give a new characterization of E-inversive semigroups.
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Lemma 3.7 A semigroup S is E-inversive if and only if for any a ∈ S there
exists x ∈ S such that axa ≤S a (i.e., if and only if T (a) 6= ∅).

Proof. If S is E-inversive then for any a ∈ S there is some x ∈ S such that
ax ∈ ES . Therefore, axa = ax · a = a · xa implies that axa ≤S a. Conversely,
let a ∈ S, x ∈ S be such that axa ≤S a. If axa = a then ax ∈ ES . If axa <S a
then axa = y · a = a · z, y · axa = axa, for some y, z ∈ S. Hence

(ax)3 = axa · xax = ya · xax = yaxa · x = axa · x = (ax)2

and (ax)4 = (ax)2 ∈ ES . Thus a · xax ∈ ES , i.e., S is E-inversive.

Theorem 3.8 Let S be a monoid. Then S is an F -monoid if and only if for
any a ∈ S, max T (a) exists in (S,≤S).

Proof. Necessity holds by Corollary 3.6.
Sufficiency. First, by Lemma 3.7, S is E-inversive. Next, we show that S is

E-unitary. Let e, ex ∈ ES . Then exe = ex · e = e · xe implies that exe ≤S e,
i.e., x ∈ T (e). Since e1Se = e ≤S e, we have 1S ∈ T (e) and 1S ≤S max T (e). It
follows by Lemma 3.1, that 1S = maxT (e). Therefore, x ≤S 1S , so that by [8],
Lemma 2.1, x ∈ ES . Thus, by Proposition 3.2, S is a generalized F -monoid.
Hence, by Lemma 3.1, the pivot of S is ξ = 1S , i.e., ξ is regular. Therefore by
[4], Theorem 3.3, S is an F -semigroup.

Remark. In the language of partially ordered semigroups, Theorem 3.8
says that a monoid S is principally ordered with respect to its natural partial
order ≤S (see [4]) if and only if S is an F -monoid. Notice that ≤S is not
compatible with multiplication, in general (see [8]) - but note Examples (2) -
(6) in Section 2.

The next characterization of F -monoids S is in terms of the maximal ele-
ments in (S,≤S):

Theorem 3.9 Let S be a monoid. Then S is an F -monoid if and only if

(i) S is E-inversive;

(ii) for every a ∈ S, there exists a unique maximal m ∈ S such that a ≤S m;

(iii) if a, b ∈ S are included in the same maximal element then so are ac, bc
resp. ca,cb, for any c ∈ S.

Proof. Necessity holds by [3], Theorem 5.3.
Sufficiency. Let T = {mi|i ∈ I} be the set of all maximal elements of (S,≤S).

By (ii), T 6= ∅ and S is the disjoint union of the principal order ideals (mi] (i ∈ I)
in (S,≤S). Define

aρb ⇔ a, b ∈ (mi] for some i ∈ I.
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Using (ii) and (iii) it is easy to show that ρ is a congruence on S. Thus S/ρ
is a semigroup with 1Sρ as identity element. If e ∈ ES then e ≤S 1S and
e, 1S ∈ (1S ]. Since by Lemma 3.1, 1S is a maximal element in (S,≤S), it
follows that eρ1S . Let aρ ∈ S/ρ; then by (i), ax = f ∈ ES for some x ∈ S.
Thus, (aρ) (xρ) = (ax) ρ = fρ = 1Sρ; therefore S/ρ is a group. Furthermore, if
a ∈ (mi] for i ∈ I, say, then we have that aρ = (mi]. Hence S is an F -semigroup.

By [3], Corollary 5.6, we have

Corollary 3.10 Let S be a monoid with compatible natural partial order. Then
S is an F -monoid if and only if S is E-inversive and for every a ∈ S there exists
a unique maximal m ∈ S such that a ≤S m.

Remark. Examples of semigroups S with compatible natural partial order
are: commutative or centric (i.e., aS = Sa for every a ∈ S) or inverse semigroups
(see [8]). Note that the latter are also E-inversive.

Following an idea of M. Petrich (see [3], Theorem 3.9, on F -semigroups) we
obtain an axiomatic description of F -monoids by means of an additional unary
operation with certain properties reflecting those of the greatest elements in the
different ρ-classes.

Theorem 3.11 Let S be a monoid. Then S is an F -monoid if and only if S
has a unary operation a → a′ satisfying

(F1) (ab)′ = (a′b)′ = (ab′)′ for all a, b ∈ S;
(F2) for every a ∈ S, a ≤S a′;
(F3) for any a ∈ S there exists b ∈ S such that (ab)′ = 1S.

Proof. Necessity. Let ρ be the defining group congruence on S and for any
a ∈ S, let a′ be the greatest element of the ρ-class aρ ∈ S/ρ. Then by [3],
Theorem 3.9, (F1) and (F2) hold. In particular, 1S ≤S 1′S ; hence 1S = 1′S (by
Lemma 3.1). Let a ∈ S; since S/ρ is a group there exists bρ ∈ S/ρ such that
(aρ) (bρ) = 1Sρ (the identity of S/ρ). Hence (ab) ρ = 1Sρ and (ab)′ = 1′S = 1S .

Sufficiency. Define a relation ρ on S by: aρb ⇔ a′ = b′. Then by (F1), ρ is
a congruence on S. Evidently, 1Sρ is the identity of the semigroup S/ρ. Note
that by (F2), 1S ≤S 1′S , whence 1S = 1′S (by Lemma 3.1). Let aρ ∈ S/ρ; then
by (F3) there exists b ∈ S such that (ab)′ = 1S = 1′S . It follows that abρ1S ,
so that in S/ρ we have (aρ) (bρ) = 1Sρ. Therefore, S/ρ is a group. Let a ∈ S;
then a′ ∈ S is the greatest element of the ρ-class aρ ∈ S/ρ by definition of ρ
and (F2) (see [3], Theorem 3.9). It follows that S is an F -semigroup.

Corollary 3.12 Let S be a monoid. Then S is an F -monoid if and only if S
is E-inversive and has a unary operation a → a′ satisfying

(F1) (ab)′ = (a′b)′ = (ab′)′ for all a, b ∈ S;
(F2) for every a ∈ S, a ≤S a′;
(F4) for any e ∈ ES, e′ = 1S.
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Proof. Necessity. First, by Proposition 3.2, S is E-inversive. Let ρ be the
defining group congruence on S and for any a ∈ S, let a′ denote the greatest
element of aρ ∈ S/ρ. Then (F1) and (F2) hold by Theorem 3.11; in particular,
1′S = 1S (by Lemma 3.1). Let e ∈ ES ; then eρ1S and e′ = 1′S = 1S .

Sufficiency. Let a ∈ S; then ax ∈ ES for some x ∈ S (since S is E-inversive).
It follows by (F4), that (ax)′ = 1S . Consequently, S is an F -semigroup (by
Theorem 3.11).

4 Three unary operations

Let S be an F -monoid and ρ the corresponding group congruence on S. Then
by Lemma 3.1, the pivot of S is ξ = 1S and by Theorem 3.4, for any a ∈ S,
1S : a = max {x ∈ S|ax ≤S 1S} = max {x ∈ S|xa ≤S 1S} exists in (S,≤S).

Since a (1S : a) ≤S 1S and (1S : a) a ≤S 1S , it follows by [8], Lemma 2.1,
that a (1S : a) , (1S : a) a ∈ ES . Furthermore, by definition, each ρ-class aρ of S
has a greatest element. Recall from [3], Corollary 3.3, that the greatest element
of (aρ)−1 ∈ S/ρ is 1S : a ∈ S and that of aρ ∈ S/ρ is 1S : (1S : a).

As the first unary operation a → a∗ on S we define

a∗ = 1S : a for any a ∈ S (see [4] ).

Hence, a∗ ∈ S is the greatest element of (aρ)−1 ∈ S/ρ, and (a∗)∗ = a∗∗ ∈ S is
that of aρ ∈ S/ρ. Then in the notation in the proof of Theorem 3.11, a′ = a∗∗.
With this observation in mind, Theorem 3.11 and Corollary 3.12 remain true if
the unary operation is given by a → a∗∗ and in conditions (F1), (F2), (F3) and
(F4) the symbol ′ is replaced by ∗∗.

Since aa∗, a∗a ∈ ES , aa∗a = aa∗ · a = a · a∗a implies that aa∗a ≤S a.
Furthermore, by [4], Theorem 3.3 and its proof, a∗ ∈ S is the greatest element
of all x ∈ S such that axa ≤S a. Since aa∗a · a∗ · aa∗a = (aa∗)3 a = aa∗a, the
element aa∗a ∈ S is regular.

We define our second unary operation a → a on S by

a = aa∗a for any a ∈ S.

Lemma 4.1 Let S be an F -monoid. If R (S) denotes the set of all regular
elements of S then R (S) = {a|a ∈ S} and R (S) is a regular subsemigroup of
S.

Proof. By [4], Theorem 2.2, every regular element a ∈ S satisfies a =
a (1S : a) a = aa∗a = a. Thus R (S) ⊆ {a|a ∈ S}. The converse inclusion was
shown above. Also, by [2], Proposition 3.7, ES forms a subsemigroup of S.
Hence the second assertion follows by [5] (see also [10], Lemma 5.2).

In the following we collect several properties of the operations ∗ and −.
Recall that A (a) = {x ∈ S|axa = a} is the set of associates of a ∈ S.
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Proposition 4.2 Let S be an F -monoid. Then for all a, b ∈ S, e ∈ ES the
following hold:

(i) a ≤S a∗∗;

(ii) e∗ = 1S;

(iii) a ≤S b ⇒ a∗ = b∗, aa∗ ≤S bb∗, a∗a ≤S b∗b;

(iv) a∗ = a∗∗∗;

(v) aa∗ ≤S a∗∗a∗, a∗a ≤S a∗a∗∗;

(vi) (ea)∗ = a∗ = (ae)∗;

(vii) If a ∈ S is regular then a′ρa∗ for all a′ ∈ A (a);

(viii) a∗ = a∗;

(ix) a∗∗ = maxA
(
a∗

)
.

Proof. (i), (ii), (iv), (v), (vi) and (vii) are proved as in [4], Proposition 4.1.
(iii) Let a ≤S b; then by the proof of [4], Proposition 4.1 (ii), a∗ = b∗. Next,

a = a∗aa∗ ≤S a ≤S b implies by [8] Lemma 2.1, that a = eb = bf for some
e, f ∈ ES . Hence

aa∗ = aa∗a · a∗ = a · a∗ = eb · a∗ = e · bb∗, aa∗ = bfb∗.

Now by [3], Lemma 3.7, and by (ii), 1S : fb∗ = (1S : f) : b∗ = 1S : b∗. Thus
we obtain from [3], Corollary 3.4, that fb∗ρb∗. Therefore fb∗ ≤S b∗(= the
greatest element of its ρ-class). It follows that fb∗ = b∗x for some x ∈ S. Thus
aa∗ = bfb∗ = bb∗x and aa∗ ≤S bb∗. Similarly, a∗a ≤S b∗b.

(viii) Since aa∗ ∈ ES we have by (vi), that a∗ = (aa∗a)∗ = a∗.
(ix) By Lemma 4.1, a∗ is regular. Hence by [4], Corollary 2.3 (with ξ = 1S)

max A
(
a∗

)
=

(
a∗

)∗ = (a∗a∗∗a∗)∗ = a∗∗,

where the last equality holds by (vi), since a∗a∗∗ ∈ ES .

Our third unary operation a → a◦ on S is defined by

a◦ = a∗aa∗, where a∗ = 1S : a (see [4] ).

Since aa∗, a∗a ∈ ES , also aa◦, a◦a ∈ ES . Recall that V (a) = {x ∈ S|a = axa, x = xax}.

Proposition 4.3 Let S be an F -monoid. Then we have for all a, b ∈ S, e ∈ ES:

(i) a◦ ∈ V (a) and a ∈ A (a◦);

(ii) aa◦ = aa∗ = aa◦ and a◦a = a∗a = a◦a;

(iii) if a′ ∈ V (a), a′ 6= a◦, then a◦ is incomparable with a′;
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(iv) a∗◦ ≤S a∗∗ and a◦∗ = a∗∗;

(v) e◦ = e;

(vi) aa∗ = a∗∗a◦ and a∗a = a◦a∗∗;

(vii) a◦◦ = a and a◦◦ ≤S a;

(viii) a◦◦◦ = a◦;

(ix) a∗∗a∗a = a = aa∗a∗∗;

(x) a ≤S b ⇒ a◦ ≤S b◦, aa◦ ≤S bb◦, a◦a ≤S b◦b;

(xi) a◦ = a◦ = a◦.

Proof. (i) a◦aa◦ = a∗aa∗ · aa∗a · a∗aa∗ = (a∗a)4 a∗ = a∗aa∗ = a◦,
aa◦a = aa∗a · a∗aa∗ · aa∗a = (aa∗)4 a = aa∗a = a;
a◦aa◦ = a∗aa∗ · a · a∗aa∗ = (a∗a)3 a∗ = a∗aa∗ = a◦.
(ii) aa◦ = a · a∗aa∗ = aa∗; aa◦ = aa∗a · a∗aa∗ = (aa∗)3 = aa∗. Similarly we

prove the other equalities.
(iii) Let a′ ∈ V (a) be such that a′ 6= a◦ (see (i)), and assume that a′ <S a◦.

Then since a′ ∈ S is regular we have by [8], Lemma 2.1, that a′ = ea◦ = a◦f
for some e, f ∈ ES . Thus, by (i),

aa′ = a · ea◦ = ae · a◦aa◦ = aa′a · a◦ = aa◦,

a′a = a◦f · a = a◦aa◦ · fa = a◦ · aa′a = a◦a.

Hence, a′ = a′aa′ = a◦a · a′ = a◦ · aa◦ = a◦ (by (i)): contradiction. The
proof for a◦ <S a′ is obtained by interchanging a◦ and a′.

(iv) a◦∗ = (a∗aa∗)∗ = a∗∗, by Proposition 4.2 (vi) (since a∗a ∈ ES);
a∗◦ = a∗∗a∗a∗∗ ≤S a∗∗ (since a∗∗a∗, a∗a∗∗ ∈ ES).
(v) and (vi) are proved as in [4], Proposition 4.2.
(vii)

a◦◦ = a◦∗a◦a◦∗ (by (iv))
= a∗∗a◦a∗∗

= a∗∗ · a◦aa◦ · a∗∗ (by (i))
= aa∗ · a · a∗a (by (vi))
= aa∗ · aa∗a · a∗a
= aa∗a
= a ≤S a. (see the beginning of this Section)

(viii)

a◦◦◦ = (a◦◦)◦

= (a)◦ (by (vii))
= (aa∗a)◦

= (aa∗a)∗ aa∗a (aa∗a)∗

= a∗ · aa∗a · a∗ (by Proposition 4.2 (vi))
= a∗aa∗

= a◦.
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(ix) By (vii), (iv) and (vi), a = a◦◦ = a◦∗a◦a◦∗ = a∗∗ · a◦a∗∗ = a∗∗ · a∗a.
Similarly aa∗a∗∗ = a.

(x) Let a ≤S b; then by Proposition 4.2 (iii), a∗ = b∗ and aa∗ ≤S bb∗. It
follows by (ii), that aa◦ ≤S bb◦ and similarly a◦a ≤S b◦b. Furthermore, since
aa∗, bb∗ ∈ ES we have aa∗ = bb∗ · aa∗ = aa∗ · bb∗. Therefore

a◦ = a∗ · aa∗ = b∗ · bb∗aa∗ = b◦ · aa∗,

a◦ = a∗ · aa∗ = a∗ · aa∗bb∗ = a∗a · b∗bb∗ = a∗a · b◦,
i.e., a◦ ≤S b◦.

(xi) Since by (i) a◦ ∈ R (S), it is obvious by [4], Theorem 2.2, that a◦ = a◦.
Also by Proposition 4.2 (viii) and a∗a ∈ ES we have a◦ = a∗aa∗ = a∗aa∗aa∗ =
a∗aa∗ = a◦.

Remark. The inequality in (iv) may be strict. Consider the non-regular
F -monoid in Example (3) of Section 2. The corresponding group congruence on
S has the classes: {−n}n∈N, {n, n}n∈N0

. The greatest elements of these classes
are: −n (n ∈ N) and n (n ∈ N0) - note that n = nϕω,µ implies that n <S n.
Hence we have for every a ∈ S: a∗∗ = −n if a = −n, and a∗∗ = n if a ∈ {n, n}.
Thus for the non-regular element a = n ∈ N ⊆ Sω we obtain that a∗∗ = n; but
a∗◦ = (a∗)◦ = (−n)◦ = −n + n + (−n) = −n + n− n = −n, i.e, a∗◦ 6= a∗∗.

In fact we have the following general result:

Lemma 4.4 Let S be an F -monoid. Then for any a ∈ S, a∗◦ = a∗∗ if and only
if S is regular.

Proof. Necessity. Let a ∈ S; then a∗∗ = a∗◦ = a∗∗a∗a∗∗ and a∗∗ ∈ S is
regular. That is, the greatest element of the ρ-class aρ ∈ S/ρ is regular. From
a ≤S a∗∗ it follows by [8], Lemma 2.1, that a ∈ S is regular, too.

Sufficiency. Let a ∈ S; then since a∗∗ ∈ S is regular, a∗∗ = a∗∗a∗∗∗a∗∗ by
[4], Corollary 2.4. By Proposition 4.2 (iv), a∗ = a∗∗∗. Thus it follows that
a∗◦ = a∗∗a∗a∗∗ = a∗∗a∗∗∗a∗∗ = a∗∗.

The operation a → a◦ on an F -monoid S gives rise to the subsemigroup

S◦ = {a◦ ∈ S|a ∈ S}

of S. This semigroup will play an important role in the following section where
a further characterization of F -monoids will be given. As a first step we show

Proposition 4.5 Let S be an F -monoid. Then S◦ = R (S) and S◦ is a regular
subsemigroup of S.

Proof. Let a◦ ∈ S◦; then by Proposition 4.3 (i), a◦ is regular, hence S◦ ⊆
R (S). Conversely, R (S) = {a|a ∈ S} by Lemma 4.1. But by Proposition 4.3
(vii), a = a◦◦ for any a ∈ S. Therefore R (S) ⊆ S◦, and equality prevails. The
second assertion holds by Lemma 4.1.

Remark. Notice that Lemma 4.1 together with Proposition 4.5 give that
R (S) = S◦ = {a : a ∈ S}.
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5 A characterization by the regular part

In this Section we give a description of F -monoids S by means of the regular
part R (S) = S◦ of S (see Proposition 4.5). It turns out that S◦ is an F -
regular semigroup, the structure of which was studied in [4]. Furthermore, the
non-regular elements of S are associates of elements in S◦ as we will show first.

Lemma 5.1 Let S be an F -monoid; then S = A (S◦).

Proof. Let a ∈ S; then by Proposition 4.3 (i), a ∈ A (a◦). Hence S ⊆ A (S◦)
and equality prevails.

Proposition 5.2 Let S be an F -monoid. Then S◦ is an F -regular subsemig-
roup of S.

Proof. By Proposition 4.5, S◦ = R (S) is a regular, hence E-inversive
subsemigroup of S. We will define a unary operation a◦ → (a◦)′ on S◦ satisfying
(F1), (F2) and (F4) of Corollary 3.12. Then it follows that S◦ is an F -regular
monoid (note that 1S ∈ S◦). Consider the operation a◦ → (a◦)′ = (a◦)∗◦ on
S◦.

Since a∗a ∈ ES we first have by Proposition 4.2 (vi):

(a◦)′ = (a∗aa∗)∗◦ = a∗∗◦.

(F1) For any a◦, b◦ ∈ S◦:

(a◦b◦)′ = (a◦b◦)∗◦ = (a∗aa∗ · b∗bb∗)∗◦ = (a∗a · a∗b∗ · bb∗)∗◦ = (a∗b∗)∗◦

by Proposition 4.2 (vi), since a∗a, bb∗ ∈ ES ; on the other hand

(a◦)′ = (a∗∗)◦ = a∗∗∗a∗∗a∗∗∗ = a∗a∗∗a∗ (by Proposition 4.2 (iv))

and thus[
(a◦)′ b◦

]′
= (a∗a∗∗a∗ · b∗bb∗)∗◦ = (a∗a∗∗ · a∗b∗ · bb∗)∗◦ = (a∗b∗)∗◦

by Proposition 4.2 (vi), since a∗a∗∗, bb∗ ∈ ES .
Similarly,

[
a◦ (b◦)′

]′
= (a∗b∗)∗◦.

(F2) For any a ∈ S by Proposition 4.2 (i), a ≤S a∗∗; hence a◦ ≤S a∗∗◦ =
(a◦)′ by Proposition 4.3 (x).

(F4) For any e ∈ ES ⊆ S◦ we have by Proposition 4.3 (v), e = e◦; hence
e′ = (e◦)′ = (e◦)∗◦ = e∗◦ = 1◦S = 1S , by Proposition 4.2 (ii).

Remark If ρ (resp. σ) denotes the corresponding group congruence on S
(resp. S◦) then σ = ρ|S0 , i.e., σ is the restriction of ρ to S◦ ⊆ S. In fact,
every ρ-class aρ ∈ S/ρ contains the regular element a = aa∗a (see Lemma 4.1):
since a ≤S a and since by [3], Lemma 2.1, aρ ⊆ S is a principal order ideal of
(S,≤S), a ∈ aρ. Furthermore, ρ|S◦ is a group congruence on S◦, because for
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any aρ = aρ ∈ G = S/ρ there exists bρ = bρ ∈ G such that (aρ) (bρ) = 1G,
i.e., (aρ)

(
bρ

)
= 1G. Since by Lemma 3.1, 1Sρ = 1G = (1S ] = 1Sσ it follows

by [1], Theorem 10.24, that ρ|S◦ = R1G
= σ, where R1G

denotes the Dubreil
equivalence defined by the anticone 1G = (1S ] - see [2].

By Theorem 3.4, in every F -monoid S the identity 1S ∈ S is rightresiduated;
in particular, 1S .·t exists in (S,≤S) for any t ∈ R (S). Therefore, we obtain from
Lemma 5.1 and Proposition 5.2:

Corollary 5.3 Let S be an F -monoid. Then (i) T = R (S) is an F -regular
monoid; (ii) S = A (T ), the set of associates of elements in T ; (iii) for any
t ∈ T , 1S .·t = max {x ∈ S|tx ≤S 1S} exists in (S,≤S).

We will show the converse of Corollary 5.3. Recall that for any a ∈ S,
〈1S .·a〉 = {x ∈ S|ax ≤S 1S} (see [3]).

Proposition 5.4 Let S be a monoid such that (i), (ii), (iii) in Corollary 5.3
are satisfied. Then S is an F -monoid.

Proof. We will prove that for any a ∈ S, 1S .·a = max 〈1S .·a〉 exists. Then
the statement follows by Theorem 3.4.

Let a ∈ S; then by (ii), tat = t for some t ∈ T . Therefore, at ∈ ES ⊆ R (S)
and ata ∈ R (S) = T . Hence by (iii), 1S .·at and 1S .·ata exist in (S,≤S). We
show that 1S .·ata = 1S .·a.

By definition, ata (1S .·ata) ≤S 1S , i.e., at · a (1S .·ata) ≤S 1S and therefore
a (1S .·ata) ≤S 1S .·at = 1S , by the proof of sufficiency of Lemma 4.4 in [3].
Thus, 1S .·ata ∈ 〈1S .·a〉.

Let x ∈ S be such that x ∈ 〈1S .·a〉; then ax ≤S 1S and ax ∈ ES (by
[8], Lemma 2.1). By the above, also at ∈ ES ; therefore at · ax ∈ ES (by (i),
T = R (S) is a F -semigroup, hence by [2], Proposition 3.7, ES = ET is a
subsemigroup of T ⊆ S). Hence, ata ·x ≤S 1S and x ≤S 1S .·ata. It follows that
1S .·ata = max 〈1S .·a〉 in (S,≤S), that is, 1S .·a exists in (S,≤S).

Combining Corollary 5.3 and Proposition 5.4 we obtain the following cha-
racterization of F -monoids:

Theorem 5.5 Let S be a monoid. Then S is an F -monoid if and only if

(i) T = R (S) is an F -regular monoid,

(ii) S = A (T ) = {x ∈ S|txt = t for some t ∈ T},

(iii) for every t ∈ R (S), 1S .·t (resp. 1S
·.t) exists in (S,≤S).

Example Let S be the F -monoid given in Example (3) of Section 2 with
Sµ = (Z,+) and Sω = (N0,+). Then the pivot of S is 0 and
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(i) T = R (S) = Sµ ∪ {0} is an F -semigroup since the group Sµ is an F -
semigroup with idempotent pivot ξ = 0; hence adjoining a new identity 0,
R (S) is an F -semigroup (by Proposition 2.1);

(ii) S = A (T ): for every n ∈ Sω = N0, t = −n ∈ T = Z satisfies t + n + t =
(−n)+n+(−n) = −n+n−n = −n = t; for every a ∈ Sµ = Z, t = −a ∈ T
satisfies t + a + t = t;

(iii) for any t ∈ R (S) = Sµ ∪ {0}, 0.·t = n if t = −n, and = −n if t = n.

6 F -∗-monoids

Following [4] we call an F -monoid S F -∗-monoid if S satisfies the identity

(ab)∗ = b∗a∗ for all a, b ∈ S,

with respect to the ∗-operation a∗ = 1S : a (a ∈ S) considered in Section 4.
Concerning such monoids we first have for S∗ = {a∗ ∈ S|a ∈ S} :

Lemma 6.1 Let S be an F -monoid. Then the following hold:

(1) S∗ = {x ∈ S|x is the greatest element of a ρ-class}

= {m ∈ S|m is maximal in (S,≤S)};

(2) (ab)∗ = b∗a∗ for all a, b ∈ S if and only if S∗ is a subsemigroup of S;

(3) If S is an F -∗-monoid then S∗ = H1, the group of units of S. In particular,
(a∗)−1 = a∗∗ for any a∗ ∈ S∗.

Proof. The three statements are proved as in [4], Lemma 6.3. The only
two points to be observed are the following. In (3), H1 ⊆ S∗ since for any
x ∈ H1, x−1 ∈ H1 is a regular element of S; hence by [4], Theorem 2.2, x−1 =
x−1

(
1S : x−1

)
x−1 = x−1

(
x−1

)∗
x−1, i.e., x =

(
x−1

)∗ ∈ S∗. Also in (3), if
a∗ ∈ S∗ = H1 then a∗a ∈ ES implies (a∗a)∗ = 1S (by Proposition 4.2 (ii));
therefore since S is an F -∗-monoid, a∗a∗∗ = 1S and a∗∗ = (a∗)−1.

Theorem 6.2 Let S be an F -∗-monoid. Then S is regular.

Proof. Let a ∈ S; then by Lemma 6.1 (3), (a∗)−1 = a∗∗. Hence it follows
from Proposition 4.3 (ix), that

a = aa∗a∗∗ = aa∗ (a∗)−1 = a.

Since by Lemma 4.1, a ∈ S is regular so is a ∈ S.

By the characterization of F -regular (F -inverse) ∗-semigroups given in [4],
Theorems 6.4 and 6.5, we obtain from Theorem 6.2
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Corollary 6.3 (1) Let S be a monoid. Then S is an F -∗-semigroup if and only
if S is a semidirect product of a band with identity by a group.

(2) Let S be a monoid with commuting idempotents. Then S is an F -∗-
-semigroup if and only if S is a semidirect product of a semilattice with identity
by a group.
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