
Classification and Comparison of Agile Methods

João M. Fernandes Mauro Almeida
Dep. Informática / CCTC, Universidade do Minho, Braga, Portugal

jmf@di.uminho.pt, mauro.almeida@gmail.com

Abstract

This manuscript describes a technique and its tool support
to perform comparisons on agile methods, based on a
set of relevant features and attributes. This set includes
attributes related to four IEEE’s Software Engineering Body
of Knowledge (SWEBOK) Knowledge Areas (KAs) and to
the agile principles defined in the Agile Manifesto. With
this set of attributes, by analysing the practices proposed by
each method, we are able to assess (1) the coverage degree
for the considered KAs and (2) the agility degree. In this
manuscript, the application of the technique is exemplified
in comparing eXtreme Programming (XP) and Scrum.

1. Introduction

This manuscript presents a technique to compare and
classify agile methods, using as criteria a set of selected
attributes. The technique intends to be a contribution for the
creation of a guide to help developers on the selection of the
software development method (focusing on agile methods)
that best fits a given development context. The attributes
chosen for this study were selected to assess, with respect
to each method, the coverage degree to four SWEBOK
KAs (that theoretically are transversal to all development
methods) and the agility degree.

The proposed technique is exemplified by comparing
two agile methods: XP and Scrum. This choice is due
to two main reasons: (1) those agile methods are among
the most cited in literature and (2) the increasing number
of development teams that currently are adopting or are
considering adopting one of these two methods.

We also point out the similarities and the differences
between both methods. Based on this analysis, we conclude
that each method explicitly defines a set of practices with
distinct focuses. For example, XP is predominantly concen-
trated on the implementation and test phases of a software
project, while Scrum was conceived essentially to support
the management of the projects. In addition, this manuscript
presents a worksheet that generates a report based on the
conducted study and on the inputs from the users.

The Agile Software Solution Framework (ASSF), a com-
plete framework to assist in the assessment of an enterprise
necessary agility degree and to identify the appropriate way
of introducing agility into the organisation is described

in [1]. The major element of this framework is the Agile
Toolkit, which provides an embedded analytic tool that
allows the comparison of agile methods (4-DAT). The 4-
DAT approach [2] examines software methods from four
perspectives: (1) method scope, (2) agility characterisation,
(3) characterisation of agile values, based on the ones
proposed in the Agile Manifesto, and (4) software process
characterisation. These perspectives were defined based in
different studies and distilled from key aspects of agile
methods. This differs from our approach which uses five
perspectives based on the SWEBOK defined KAs and the
Agile Manifesto defined values and practices. Additionally,
the perspectives presented in [2] are partly qualitative and
partly quantitative. Our approach adopts qualitative analyses
which are complemented with tool support that uses a
quantitative parametric scale, adjusted by the user.

A proposal to assess the suitability of a software project
to the adoption of an agile method is presented in [3]. This
assessment is based on ten Critical Adoption Factors. This
approach differs from ours, since we do not try to assess the
suitability of a software project to a given agile method, but
rather determine the ‘best’ method for a project.

This manuscript has the following structure. In section 2,
the main characteristics of agile methods and the Agile
Manifesto Principles are presented. A brief description of
XP and Scrum is also included. The technique proposed in
this work to classify and compare agile methods is explained
in section 3. Section 4 is the central part of the manuscript
and presents the classification and comparison of XP and
Scrum, based on the proposed analysis method. Conclusions
and future work are discussed in section 5.

2. Agile Methods

Agile methods are based on the notion of incremental
development, a technique introduced in 1975 [4]. In 2001,
enthusiasts of these new development methods came to-
gether to discuss this issue. They proposed the Agile Mani-
festo (http://agilemanifesto.org/), that defines the following
values, which are the cornerstones of the agile methods:

• Individuals and interactions over processes and tools;
• Working software over comprehensive documentation;
• Customer collaboration over contract negotiation;
• Responding to change over following a plan.

2010 Seventh International Conference on the Quality of Information and Communications Technology

978-0-7695-4241-6/10 $26.00 © 2010 IEEE

DOI 10.1109/QUATIC.2010.71

391

Additionally, twelve principles that support the values
presented above were defined: (1) The highest priority is to
satisfy the customer through early and continuous delivery
of valuable software; (2) Welcome changing requirements,
even late in development. Agile processes harness change for
the customer’s competitive advantage; (3) Deliver working
software frequently, from a couple of weeks to a couple
of months; (4) Business people and developers must work
together daily throughout the project; (5) Build projects
around motivated individuals. Give them the environment
and support they need, and trust them to get the job done;
(6) The most efficient and effective method of conveying
information to and within a development team is with face-
to-face conversation; (7) Working software is the primary
measure of progress; (8) Agile processes promote sus-
tainable development. The sponsors, developers, and users
should be able to maintain a constant pace; (9) Continuous
attention to technical excellence and good design enhances
agility; (10) Simplicity — the art of maximizing the amount
of work not done — is essential; (11) The best architectures,
the best requirements, and the best designs emerge from self-
organizing teams; (12) The team regularly reflects on how
to become more effective.

These principles have two main objectives: (1) to promote
a better understanding of what agile methods are, and (2)
to guide the project teams to determine if they are in fact
using an agile method. This manifesto, and all its values and
principles, represent the philosophy behind agile methods
and ideally should be present in all practices proposed by
the various agile methods.

In 1990, Beck et al. concluded that communication, sim-
plicity, frequent feedback and courage are the main values
for improving the process of software development [5].
Based on these values, XP was proposed in 1999 [6] to mit-
igate the problems caused by long periods of development
without feedback from the client that were until then (and
still are) common in many software projects. To attain this
aim, XP proposes a set of 12 practices, described in table 1,
that should be used in software projects [6], [7].

Sutherland proposed in 1993, based on the ideas and
concepts presented by Takeuchi and Nonaka in 1986 [8],
a new development method, which was, two years later,
formalized and adapted for software development under the
name of Scrum [9]. The use of Scrum has already been
attempted in projects with a higher dimension than the one
which agile methods are usually applied to [10].

As XP, Scrum also proposes a set of practices with the
objective of facilitating and promoting efficient software
construction (table 2).

3. Proposed Technique

Conceiving a technique to perform comparisons on soft-
ware development methods constitutes a great challenge.

Practice Description

The Planning
Game

This practice suggests a close relationship between the client and the technical team of
the project. Each part is responsible for defining and identifying a set of project-specific
attributes, such as scope, deadlines, effort estimate and technologic drawbacks.

Small Releases
The objective of this practice is to quickly put in production (i.e., to implement and test)
each new small set of features. Each release should be as small as possible and contain the
most valuable requirements for the client.

Metaphors
Metaphors allow to describe a feature to be implemented, by creating a common vision of
the client and the technical team on how the product should work. This way one can reduce
the use of technical expressions, often difficult to be understood by the client.

Simple Design The architecture and the code (including the unit tests) should be as simple as possible.

Test-Driven De-
velopment

All implemented features must be covered by unit tests, which must all be always satisfied,
in an effort to eliminate unit-level and regression bugs during development. In XP, a feature
is only ready to be integrated in a release when it meets these requirements.

Refactoring Refactoring aims to simplify implemented code by removing code ambiguity and redun-
dancy.

Pair
Programming

This practice consists in having two programmers working simultaneously in the same
computer. Each programmer has a specific role. While one element is responsible for writing
the code, the other is responsible for verifying and validating it, with particular attention to
untested features or code blockage.

Collective Code
Ownership

Each team member is encouraged to perform all necessary changes in the code. Thus, all
team members are owners of the code. This practice avoids unnecessary waits for third party
changes into the code.

Continuous Inte-
gration

After a new feature is implemented or the code is adjusted, and all tests are successfully
executed, a new release should be created reflecting all the changes.

40-Hour Weeks No element of the team should work a second consecutive week of overtime [7]. If so, the
problem should be addressed as a project management issue.

On-site Customer
XP proposes not only a close relationship with the client, but also that a client (or a
representative) should always be present during the life-cycle of the project, therefore being
part of the team of the project.

Coding
Standards Coding standards allow a easier interpretation of the implemented code by all programmers.

Table 1: Proposed practices in XP

The main difficulties that contribute to the essence of the
challenge are: (1) Similar application contexts for the con-
sidered methods, both before and after their application, are
hard to find; (2) Scientific evidences of the proposed ideas
are difficult to provide; (3) The experience and intuitions of
the persons conducting the study need to be considered.

To reduce and overcome these difficulties, we adopt the
quasiformal comparison presented in [11]. Five different
actions for the quasiformal comparison are suggested and
we have chosen to use the second alternative, which implies
that we need to distill a set of important features inductively
from several methods and compare each method against it.

Regarding the attributes used in our technique, we selected
four of the eleven knowledge areas (KAs) defined in the
SWEBOK [13]: (1) Software Requirements, (2) Software
Construction, (3) Software Testing, and (4) Software En-
gineering Management. With this subset of attributes, we
intend to assess the coverage degree of each method with
respect to the selected KAs. Although covering the full set
of the SWEBOK KAs is obviously the best option and
a priority in future work, the present study consists on
an exploratory approach focusing on proving the concepts
presented. Therefore, the selected subset is enough given
the scope of the study. Additionally, we believe that this
subset is broad enough to include the critical activities in
any software development context. A fifth attribute, which
relates the agile principles of the Agile Manifesto and the
practices advocated by a given agile method, was selected
in order to assess the agility degree of the methods. Table 3
summarises the selected attributes.

4. Classifying and Comparing XP and SCRUM

To classify the existence of practices, advocated by the
agile methods, that support the selected KAs and to charac-

392

terise the coverage of the principles of the Agile Manifesto
by each method, we use the criteria presented in table 4.

Practice Description

Product Backlog

Represents the list of all features and requirements to be implemented.
The product owner is responsible for creating and maintaining this list.
A priority and estimated effort is associated to each item of the Product
Backlog.

Effort Estimation Effort estimation is the iterative process through which the effort to perform
an item of the Product Backlog is predicted.

Sprint

Sprints are considered the agile part of Scrum and they consist on a
development cycle through which the Scrum team organizes itself to
produce a new increment to be integrated into the new version of the
product, completed at the end of each sprint. Each sprint usually lasts
from 2 to 4 weeks [12].

Daily Meeting

Meetings are held daily, lasting 15 minutes or less. These meetings aim
to analyze the progress of the project and the unexpected issues that may
delay the project, by identifying the work undertaken since the last meeting
and the work to be performed until the next one.

Sprint Planning Meeting

The sprint planning meeting is divided into two parts. During the first part
of the meeting, the Scrum master, the client, the product owner and the
Scrum team select a set of items of the Product Backlog to be implemented
during the sprint. Next, the selected items are decomposed into tasks to
be performed by the Scrum team elements. These tasks will integrate the
sprint backlog.

Sprint Backlog

Represents the set of activities to be performed during a sprint. Each
activity or set of activities represents an item of the Product Backlog that
should be integrated in the next release, to be available at the end of the
current sprint.

Sprint Review Meeting
At the end of each sprint, a review meeting is held. This meeting is attended
by all stakeholders and a demonstration of all the features of the new
release is performed.

Sprint Retrospective
Its purpose is to promote discussion among the project team elements about
issues to which the team may have been exposed to and how these can be
tackled in future sprints.

Sprint Burn Down Chart
The Sprint burn down chart is a publicly displayed chart showing the
remaining work of the sprint backlog, updated every day, giving a simple
view of the work to be performed until the end of the current sprint.

Table 2: Proposed practices in Scrum

The challenge in quantifying the coverage of a given sub-
attribute or principle, by a set of practices proposed by each
analysed method, has lead to the choice of a qualitative
classification system. Although simple, a qualitative classifi-
cation system satisfies the objective of our technique. In the
remainder of this manuscript, due to space limitations, we
only show the results obtained for two attributes (Software
Requirements and Software Construction), although similar
results were obtained for the other attributes.

Attribute Description, sub-attributes and principles
Software
Requirements

Identifies how the method addresses the requirements analysis in a software project, particularly regarding
the following sub-attributes:

• Software Requirements Fundamentals; • Requirements Analysis;
• Requirements Process; • Requirements Validation;
• Requirements Elicitation;

Software Construction Identifies how the method deals with the software implementation, particularly regarding the following
sub-attributes:

• Minimizing Complexity; • Construction for Verification;
• Response Capability to Unexpected Changes; • Standards in Construction.

Software Testing Identifies how the method validates the implemented features and the approach adopted for testing,
particularly regarding the following sub-attributes:

• Software Testing Fundamentals; • Test Related Measures;
• Test Levels; • Test Process.

Software Engineering
Management

Identifies how the method addresses the project management, particularly regarding the following sub-
attributes:

• Initiation and Scope Definition; • Closure;
• Software Project Planning; • Review and Evaluation.
• Software Project Enactment;

Agile Principles vs.
Proposed Practices

Identifies how the principles presented in the Agile Manifesto relate with the practices introduced by the
agile method.

Table 3: Set of attributes and sub-attributes used for comparing agile methods

NS Not Satisfied None of the proposed practices or concepts of the method support the sub-
attribute or principle

PS Partially Satisfied The proposed practices or concepts of the method support the sub-attribute or
principle, although some of its aspects are not considered

AS Adequately Satisfied The proposed practices or concepts of the method entirely support the sub-
attribute or principle

Table 4: Classification criteria adopted in the comparative analysis

4.1. Software Requirements

Concerning the Software Requirements attribute, each
agile method was compared against all the sub-attributes
presented in table 5.

4.1.1. XP. XP proposes a set of practices and concepts that
support the definition, the elicitation and the analysis of the
requirements (i.e., Planning Game, exploration phase of the
life cycle, and definition of the user stories). However, XP
does not clearly and objectively distinguishes the different
types of existing requirements, therefore we consider that it
partially satisfies the sub-attribute 1. Software Requirements
Fundamentals.

Sub-attribute Description

1. Software Requirements
Fundamentals

Refers to the clear definition of software requirements, distinguishing between
different types of requirements (e.g., product vs. system, functional vs. non-
functional)

2. Requirements Process
Refers to the definition of a clear process to the specification, the analysis
and the validation of requirements, specifying all actors, proposed practices, and
management models

3. Requirements Elicitation Refers to the way software requirements are elicited and which actors are involved
in the process

4. Requirements Analysis Refers to the proposed practices for detecting and solving conflicts and for
classifying software requirements, according to a predefined metric

5. Requirements Validation Refers to the proposal of concepts, practices or techniques to allow the validation
of the implemented requirements

Table 5: The sub-attributes of the Software Requirements KA

The life cycle of XP defines a clear process for collecting,
specifying, analysing and validating requirements through a
software project. In this process, actors and used artifacts
are clearly defined and explained, therefore allowing one to
conclude that XP adequately satisfies the sub-attribute 2.
Requirements Process.

The primary technique used for requirements elicitation
in XP is the creation of user stories by the client, which
is seen as a team member of the project. The client works
together with the other team members to create user stories,
to define functional and acceptance tests, and to prioritise
requirements. In XP, requirements are not a monolithic
document, but rather include a collection of user stories and
a set of functional, acceptance and unit tests, incrementally
defined [14]. XP adequately satisfies the sub-attribute 3.
Requirements Elicitation.

XP does not present any practice or technique that ad-
dresses the detection and negotiation of conflicts. This aspect
of XP hinders its adoption when the client is not aware of the
requirements or when the requirements, specified by several
stakeholders, are in conflict. Regarding the classification of
requirements, XP assigns a priority to a given requirement
based only on its business value for the client. Since XP
does not propose techniques to prevent and solve conflicts
among the requirements and only provides a simple method
for classifying and prioritising requirements, XP partially
satisfies the sub-attribute 4. Requirements Analysis.

Requirements validation in XP is performed by the user
defining a set of functional and acceptance tests. Thus,
XP adequately satisfies the sub-attribute 5. Requirements
Validation. Table 6 presents a summary of the classification
of XP under the attribute Software Requirements.

4.1.2. Scrum. Several basic concepts of software require-
ments are present in Scrum, which defines the phases of the
life cycle and a set of practices focused in requirements elic-
itation. Additionally, elements integrating the Product Back-

393

log may represent both system or product functionalities to
be implemented, functional or non-functional requirements,
research activities, or errors and defects to be corrected.
Scrum quantifies and qualifies requirements, presenting a
clear definition of what each different type of requirement is,
therefore adequately satisfying the sub-attribute 1. Software
Requirements Fundamentals.

Sub-attribute Classif. Aspects of XP that satisfy the sub-attribute
Software
Requirements
Fundamentals

PS
• Definition of the concepts related to software requirements;
• No distinction between different types of requirements.

Requirements
Process AS

• Definition of a process to collect, specify, analyze and validate
requirements, explicitly defining the actors and activities to be
undertaken.

Requirements
Elicitation AS

• On-site client;
• User Stories.

Requirements
Analysis PS

• Classification of requirements by setting priorities (business
value criteria);

• No techniques for detection and resolution of conflicts between
requirements.

Requirements
Validation AS • Functional and acceptance tests written by the client.

Table 6: Analysis performed under the attribute Software Requirements for XP

The requirements process in Scrum, starts with the pre-
game phase where the Product Backlog is created. During
this phase, the client works together with the product owner
to associate a priority level to each element of the backlog.
At the start of each sprint, a sprint planning meeting takes
place, where a subset of the elements of the Product Backlog
is selected to be implemented during that sprint. Each of
these elements is divided by the Scrum team into activities
to be performed, which are integrated in the sprint backlog.
This short description of the requirements process associated
with Scrum shows that it adequately satisfies the sub-
attribute 2. Requirements Process.

Scrum presents two main methods for requirements elic-
itation, therefore adequately satisfying the sub-attribute 3.
Requirements Elicitation: (1) close interaction between the
client and the project team during the pre-game phase, and
(2) the possibility for any of the involved parties of the
project to add a new item to the Product Backlog.

Regarding requirements classification, the analysed meth-
ods are very similar. Both XP and Scrum associate a given
priority to each of the elicited requirements based on the
business value that each requirement has for the client, which
may in some cases reveal to be a simplistic prioritization
system. Additionally, Scrum does not suggest techniques
for detection and resolution of conflicts among software
requirements, therefore partially satisfying the sub-attribute
4. Requirements Analysis.

Although the requirements process of Scrum tackles re-
quirements validation, no practice or technique for validating
elicited requirements is presented, therefore the sub-attribute
5. Requirements Validation is not satisfied by Scrum. A
summary of the classification of Scrum under the attribute
Software Requirements is presented in table 7.

4.2. Software Construction

The Software Construction KA refers to the activities
related to the creation of software through a combination
of coding, verification, unit testing, integration testing, and
debugging [13]. This KA comprises 3 sub-areas. For this
technique, we have chosen the sub-area Software Con-
struction Fundamentals. This sub-area encompasses 4 sub-
attributes focused on software design and implementation:
1. Minimizing Complexity, 2. Anticipating Change, 3. Con-
structing for Verification and 4. Standards in Construction.
For this study, the sub-attribute 2. Anticipating Change was
replaced for 2. Response to Changes. Agile methods char-
acterize themselves for embracing/responding to unexpected
changes, rather that try to anticipate those same changes.
Although clearly different, replacing the sub-attribute 2.
Anticipating Change for 2. Response to Changes would
better address the agile method characteristics and focus.
An analysis under this perspective aims to identify how XP
and Scrum address the implementation of a software project,
with a focus on the sub-attributes in table 8.

4.2.1. XP. XP proposes two practices that address the
sub-attribute 1. Minimizing Complexity: simple design and
refactoring. Simple design practice is intended to prevent
the introduction of unnecessary complexity in the imple-
mented code, thereby facilitating the comprehension and
the maintenance of the code. The practice of refactoring
allows (1) to create a more readable and easy to understand
code by removing unnecessary complexity, (2) to eliminate
redundancy and duplicated functionality and (3) to increase
the modularity and scalability, thus promoting code reuse.
Additionally, one of the values of XP is simplicity, as
opposed to complexity. Thus, XP adequately satisfies the
sub-attribute 1. Minimizing Complexity.

The sub-attribute 2. Response to Changes reflects the
agility and rapid response to changes in a software project,
two of the main aspects of agile methods. Through a set of
practices, such as collective code ownership, refactoring and
continuous integration, XP improves its ability to respond to
changes, therefore adequately satisfying the sub-attribute 2.
Response to Changes. As stated before, collective ownership
avoids unnecessary delays when writing/changing code. The
practice of refactoring indirectly affects the responsiveness
to changes in the course of a software project. Refactoring
aims to create simple and readable code, and the task of
making changes to the implemented code is greatly facil-
itated when the code is readable and simple. The practice
of continuous integration supports the ability of responding
to changes, ensuring product integrity and that changes to
existing code and the implementation of new features does
not compromise the work already done.

The existence of practices such as test-driven development
and pair programming, in XP, creates a solid infrastructure

394

that consists in a set of tests whose implementation accom-
panies or precedes the actual implementation of the code.
This infrastructure supports the validation and verification
of the created code. The combination of these two practices
allows the rapid detection of bugs or errors during the
writing of the code and the execution of the tests, therefore
adequately satisfying the sub-attribute 3. Constructing for
Verification.

Sub-attribute Classification Aspects of Scrum that satisfy the sub-attribute
Software
Requirements
Fundamentals

AS
• Definition of software requirements related concepts;
• Distinction among different types of requirements.

Requirements
Process AS

• Pre-game phase;
• Sprint planning meeting;
• Definition of a process to collect, specify, analyse and validate

requirements, explicitly identifying the actors and the activities
to be undertaken.

Requirements
Elicitation AS

• Close interaction between the client and project team in early
stages;

• Product backlog;
• Sprint backlog;
• Possibility for any of the evolved entities to add a new element

to the Product Backlog.

Requirements
Analysis PS

• Classification of requirements by setting priorities (business
value criteria);

• No techniques for detection and resolution of conflicts between
requirements.

Requirements
Validation NS -

Table 7: Analysis performed under the attribute Software Requirements for Scrum

Sub-attribute Description

1. Minimizing Complexity Refers to the use of techniques and practices to minimize the complexity of the
implemented code

2. Response to Changes Refers to the use of techniques and practices that aim at improving the ability to
respond to possible changes

3. Constructing for Verification
Refers to the adoption of techniques and practices in code implementation, which
allows a rapid detection of bugs and/or errors during the writing of the code and
the execution of the tests

4. Standards in Construction Refers to the use of standards on a software project

Table 8: Sub-attributes of the Software Construction KA

The use of coding standards, practice proposed by XP,
aims to ease the interpretation of the code by programmers
other than the its authors. Additionally, applying other
practices of XP, such as refactoring and pair programming,
would be considerably more difficult without the use of
coding standards. The use of standards on a software project
should not be restricted to the implementation phase, but can
also include the other phases, like requirements, design, test,
or maintenance. Since the use of standards is only explic-
itly proposed for the implementation phase, XP partially
satisfies the sub-attribute 4. Standards in Construction. A
summary of the XP analysis performed under the attribute
Software Construction is presented in table 9.

4.2.2. Scrum. A detailed analysis to the practices proposed
by Scrum reveals that this agile method focuses mainly on
the management activities of the software projects, and can
also be applied to other project types. Scrum appears with
the objective of improving the software engineering concepts
used in project management, identify problems and restric-
tions in the development process and in the implementation
practices used. Thus, the implementation and construction
process itself is not addressed by Scrum, leaving to the cross-
functional teams to choose the practices used in architectural

design, implementation, product configuration, testing and
integration. Thus, all sub-attributes of the KA Software
Construction are not satisfied by Scrum. A summary of the
analysis on Scrum performed under the attribute Software
Construction is presented in table 10.

Sub-attribute Classification Aspects of XP that satisfy the sub-attribute

Minimizing Complexity AS
• XP values;
• Simple Design;
• Refactoring.

Response to Changes AS
• Collective Code Ownership;
• Refactoring;
• Continuous Integration.

Constructing for Verification AS
• Test-Driven Development;
• Pair Programming.

Standards in Construction PS • Coding Standards.

Table 9: Summary of the analysis on XP for attribute Software Construction

Sub-attribute Classification Aspects of Scrum that satisfy the sub-attribute
Minimizing Complexity NS -
Response to Changes NS -
Constructing for Verification NS -
Standards in Construction NS -

Table 10: Summary of the analysis on Scrum for attribute Software Construction

4.3. Synthesis of the Results

Under the attribute Software Requirements, figure 1(a)
shows that 3 out of 5 of the selected sub-attributes are
adequately satisfied by XP and that 2 of those attributes
are partially satisfied. Figure 1(b) illustrates the fact that 3
of those attributes are adequately satisfied, 1 is partially
satisfied, and the last one is not satisfied by Scrum. The
results of XP derive mainly from the close contact between
the technical team and the client. The importance given to
this relationship is reflected in the fact that XP address all
sub-attributes of the Software Requirements KA.

Regarding the attribute Software Construction, the anal-
ysis concludes that XP adequately satisfies 3 out of the
4 selected sub-attributes and partially satisfies 1 of those
same sub-attributes, while Scrum does not satisfy any of
the selected sub-attributes. The fact that Scrum does not
explicitly suggest any practice oriented towards implemen-
tation, delegating the choice of which practices to apply to
the cross-functional teams, shows a clear difference between
XP and Scrum under the attribute Software Construction.

Attributes XP Scrum
AS PS NS AS PS NS

Software Requirements 60% 40% 0% 60% 20% 20%
Construction of Software 75% 25% 0% 0% 0% 100%
Software Testing 100% 0% 0% 0% 0% 100%
Software Engineering Management 80% 0% 20% 80% 20% 0%
Agile Principles - Proposed Practices rela-
tion 75% 8% 17% 50% 17% 33%

Table 11: Complete results when comparing XP and Scrum under five attributes

XP puts a great emphasis on testing. Based on test-driven
development, XP places tests as the foundations of software
development. The results of the analysis under the attribute
Software Testing reflect this aspect of XP and the importance
it places on creating and running tests in a software project.
XP analysis under the attribute Software Testing revels that

395

XP adequately satisfies all sub-attributes of this KA. Scrum
does not satisfy any of the sub-attributes of Software Testing.

Figure 1: Results of the analysis to (a) XP and (b) Scrum, for attribute Software
Requirements

Under the attribute Software Engineering Management,
XP adequately satisfies 4 of the 5 selected sub-attributes
and only the sub-attribute Review and Evaluation was not
satisfied. When compared to the same set of sub-attributes
Scrum reveals itself more complete than XP, adequately
satisfying 4 of the selected sub-attributes and partially
satisfying one of those same sub-attributes. Furthermore, the
analysis shows that Scrum tackles this part of a software
project in a much more detailed and precise way when
compared to XP.

Under the attribute Agile Principles vs. Proposed Prac-
tices relation, results show that XP adequately satisfies 7
of the principles presented in the Agile Manifesto, while
Scrum only adequately satisfies 5 of those same attributes.
Considered the first agile method and with its origin previous
to the creation of the Agile Manifesto, XP has clearly
influenced a considerable number of the principles that
constitute the manifesto and the concepts which characterise
agile methods. Therefore, it is not a surprise that, under
this attribute, XP adequately satisfies a greater number of
principles of the Agile Manifesto when compared with
Scrum. Table 11 synthesises all the obtained results.

5. Conclusions and Future Work

The increasing challenges that need to be addressed in
software development projects can only be overcome by
professionals with experience and excellent skills, both hard
and soft. There are no two equal projects and therefore
the approaches and the practices that have proven effective
previously may not be in the future. Thus, it is essential
to gain a thorough knowledge of the existing development
methods when deciding which one(s) to employ, based on
the characteristics of the projects and on the competences of
the team members. Thus, one important issue is to decide
on the development method (or the combination of practices
advocated by various development methods) that best suits
the software project under consideration in a given situation.

This manuscript contributes to this challenge by present-
ing a technique and the corresponding tool that permits

one to classify and compare software development methods
under a set of relevant features and attributes. This set
includes attributes related to four SWEBOK KAs and to
the agile principles defined in the Agile Manifesto. With
these attributes, by analysing the practices proposed by each
method, we are able to assess a given agile method in
relation to (1) the coverage degree for the considered KAs
and (2) the agility degree. Since the technique was especially
conceived to compare agile methods, we exemplify its usage
in a comparison between XP and Scrum.

As future work, the following actions are planned:
• To apply Pareto analysis to compare agile methods;

one method could cover less a set of attributes, but
cover more another one. Thus, based on the context,
the developer chooses one or the other.

• To extend the set of analysed methods to include
other agile methods, such as Adaptive Software De-
velopment (ASD), Agile Modeling (AM), Dynamic
Systems Development Method (DSDM) and Feature-
Driven Development (FDD);

• To include in the analysis the existence of tools to
support the various agile methods;

• To extend the set of SWEBOK KAs used to classify
and compare the agile methods.

References

[1] A. Qumer, B. Henderson-Sellers. A framework to support the
evaluation, adoption and improvement of agile methods in practice.
J. Syst. Softw., 81(11):1899–1919, 2008.

[2] A. Qumer, B. Henderson-Sellers. An evaluation of the degree
of agility in six agile methods and its applicability for method
engineering. Inform. Softw. Tech., 50(4):280–295, 2008.

[3] J. McAvoy, D. Sammon, I. Owens. A Simple Tool to Assist in Agile
Methodology Adoption Decisions. J. Decis. Syst., 16(4):451–468,
2007.

[4] V. R. Basili, A. J. Turner. Iterative Enhancement: A Practical
Technique for Software Development. IEEE Trans. on Softw. Eng.,
1(4):390–396, 1975.

[5] M. C. Paulk. Extreme Programming from a CMM Perspective. IEEE
Softw., 18(6):19–26, 2001.

[6] K. Beck. Embracing Change with Extreme Programming. Computer,
32(10):70–77, 1999.

[7] K. Beck, C. Andres. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2nd edition, 2004.

[8] H. Takeuchi, I. Nonaka. The New New Product Development Game.
Harvard Bus. Rev., 64(1):137–146, 1986.

[9] K. Schwaber. Scrum Development Process. OOPSLA’95 Business
Object Design and Implementation Workshop. Springer, 1995.

[10] B. Boehm, R. Turner. Balancing Agility and Discipline: A Guide for
the Perplexed. Addison-Wesley, 2003.

[11] H. G. Sol. A feature analysis of information systems design method-
ologies: methodological considerations. Working Conf. on Feature
Analysis of Information Systems Design Methodologies, pp. 1–8,
1983.

[12] P. Abrahamsson, O. Salo, J. Ronkainen, J. Warsta. Agile Software
Development Methods: Review and Analysis. Technical Report 478,
VTT Centre of Finland, 2002.

[13] A. Abran, P. Bourque, R. Dupuis, J. W. Moore (eds). Guide to the
Software Engineering Body of Knowledge - SWEBOK. IEEE Press,
2004.

[14] R. Duncan. The Quality of Requirements in Extreme Programming.
J. Def. Softw. Eng., 2001.

396

