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Abstract. The incidence of Dengue epidemiologic disease has grown in recent decades. In this paper an application of
optimal control in Dengue epidemics is presented. The mathematical model includes the dynamic of Dengue mosquito, the
affected persons, the people’s motivation to combat the mosquito and the inherent social cost of the disease, such as cost
with ill individuals, educations and sanitary campaigns. The dynamic model presents a set of nonlinear ordinary differential
equations. The problem was discretized through Euler and Runge Kutta schemes, and solved using nonlinear optimization
packages. The computational results as well as the main conclusions are shown.
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INTRODUCTION

Dengue is a mosquito mostly found in tropical and sub-tropical climates worldwide, mostly in urban and semi-urban
areas. It can provoque a mosquito-borne infection, that causes a severe flu-like illness, and sometimes a potentially
lethal complication called dengue haemorrhagic fever, and about 40% of the world’s population are now at risk.

The aim of this paper is to present an attempt to apply quantitative methods in the optimization of investments in the
control of Epidemiologic diseases, in order to obtain a maximum of benefits from a fixed amount of financial resources.
This model includes the dynamic of the growing of the mosquito, but also the efforts of the public management to
motivate the population to break the reproduction cycle of the mosquitoes by avoiding the accumulation of still water
in open-air recipients and spraying potential zones of reproduction.

The paper is organized as follows. Next section presents the dynamic model for dengue epidemics, where the
variables, parameters and the control system are defined. Then, the numerical implementation and the strategies used
to solve the problem are reported. Finally, the numerical results are presented and some conclusions are taken.

DYNAMIC MODEL

The model described in this paper is based on the model proposed in [3].
The notation used in the mathematical model is as follows.

State Variables:
x1(t) density of mosquitoes;
x2(t) density of mosquitoes carrying the virus;
x3(t) number of persons with the disease;
x4(t) level of popular motivation to combat mosquitoes (goodwill).

Control Variables:
u1(t) investments in insecticides;
u2(t) investments in educational campaigns.



Parameters:
αR average reproduction rate of mosquitoes;
αM mortality rate of mosquitoes;
β probability of contact between non-carrier mosquitoes and affected persons;
η rate of treatment of affected persons;
µ amplitude of seasonal oscillation in the reproduction rate of mosquitoes;
ρ probability of persons becoming infected;
θ fear factor, reflecting the increase in the population’s willingness to take actions to combat

the mosquitoes as a consequence of the high prevalence of the disease in the specific social
environment;

τ forgetting rate for goodwill of the target population;
ϕ phase angle to adjust the peak season for mosquitoes;
ω angular frequency of the mosquitoes’s proliferation cycle, corresponding to 52 weeks

period;
P population in the risk area (usually normalized to yield P = 1);
γD the instantaneous costs due to the existence of affected persons;
γF the costs of each operation of spraying insecticides;
γE the cost associated to the instructive campaigns.

The Dengue epidemic can be modeled by the following nonlinear time-varying state equations. Equation (1)
represents the variation of the density of mosquitoes per unit time to the natural cycle of reproduction and mortality
(αR and αM), due to seasonal effects µsin(ωt +ϕ) and to human interference −x4(t) and u1(t):

dx1

dt
= [αR (1−µsin(ωt +ϕ))−αM− x4(t)]x1(t)−u1(t). (1)

Equation (2) expresses the variation of the density x2 of mosquitoes carrying the virus. The term
[αR (1−µsin(ωt +ϕ))−αM− x4(t)]x2(t) represents the rate of the infected mosquitoes and β [x1(t)− x2(t)]x3(t)
represents the increase rate of the infected mosquitoes due to the possible contact between the non infected mosquitoes
x1(t)− x2(t) and the number persons with disease denoted by x3:

dx2

dt
= [αR (1−µsin(ωt +ϕ))−αM− x4(t)]x2(t)+β [x1(t)− x2(t)]x3(t)−u1(t). (2)

The dynamics of the infectious transmission is presented in equation (3). The term −ηx3(t) represents the rate of
cure and ρx2(t) [P− x3(t)] represents the rate at which new cases spring up. The factor [P− x3(t)] is the number of
persons in the area, that are not infected:

dx3

dt
=−ηx3(t)+ρx2(t) [P− x3(t)] . (3)

Equation (4) is a model for the level of popular motivation (or goodwill) to combat the reproductive cycle of
mosquitoes. Along the time, the level of people’s motivation changes and, as consequence, it is necessary to invest in
educational campaigns designed to increase consciousness of the population under risk by a proper understanding
of the determinants involved with specific disease. The expression −τx4(t) represents the decay of the people’s
motivation with time, due to forgetting. The expression θx3(t) represents the natural sensibilities of the public due
to increase in the prevalence of the disease.

dx4

dt
=−τx4(t)+θx3(t)+u2(t). (4)

The goal of the problem is to minimize the cost functional

J [u1(.),u2(.)] =
∫ t f

0
{γDx2

3(t)+ γF u2
1(t)+ γEu2

2(t)}dt. (5)

This functional includes the social costs related to the existence of ill persons, γDx2
3(t), the recourses needed for

spraying of insecticides operations, γF u2
1(t), and for educational campaigns, γEu2

2(t). The model for the social cost is
based in the concept of goodwill explored by Nerlove and Arrow [8].



Due to computational issues, the optimal control problem (1)-(5) that is in the Lagrange form, was converted into
an equivalent Mayer form. Hence, using a standard procedure to rewrite the cost functional [6], the state vector was
augmented by an extra component x5,

dx5

dt
= γDx2

3(t)+ γF u2
1(t)+ γEu2

2(t) (6)

leading to the equivalent terminal cost problem of minimizing

I[x5(.)] = x5(t f )

with given t f , subject to the control system (1)-(4) and (6).

NUMERICAL IMPLEMENTATION

The simulations were carried out using the following normalized numerical values: αR = 0.20, αM = 0.18, β = 0.3,
η = 0.15, µ = 0.1, ρ = 0.1, θ = 0.05, τ = 0.1, ϕ = 0, ω = 2π/52, P = 1.0, γD = 1.0, γF = 0.4, γE = 0.8, x1(0) = 1.0,
x2(0) = 0.12, x3(0) = 0.004, and x4(0) = 0.05. These values are available in the paper [3]. The final time used was
t f = 52 weeks.

To solve this problem it was necessary to discretize the problem. Two methods were selected: a first order, the
Euler’s scheme, and a Runge Kutta’s sheme of second order [1]. In both cases, it is assumed that the time t = nh

moves ahead in uniform steps of length h. If a differential equation is written like
dx
dt

= f (t,x), it is possible to make
a convenient approximation of this. In the Euler’s scheme the update is given by

xn+1 ' xn +h f (tn,xn),

while in the Runge Kutta’s method is

xn+1 ' xn + h
2 [ f (tn,xn)+ f (tn+1,xn+1)] .

This approximation xn+1 of x(t) at the point tn+1 has an error depending on h2 and h3, for the Euler and Runge Kutta
methods, respectively. This discretization process transforms the dengue epidemics problem in a standard nonlinear
optimization problem (NLP), with an objective function and a set of nonlinear constraints. This NLP problem was
codified, for both discretization schemes, in the AMPL modelling language [4].

Two nonlinear solvers with distinct features were selected to solve the NLP problem: the Knitro and the Snopt.
The first one [2] is a software package for solving large scale mathematical optimization problems based mainly
on the Interior Point (IP) method. Snopt [5] uses the SQP (Sequential Quadratic Programming) philosophy, with an
augmented Lagrangian approach combining a trust region approach adapted to handle the bound constraints. The
NEOS Server [7] platform was used as interface with both solvers.

COMPUTATIONAL RESULTS

Table 1 reports the results for both solvers, for each discretization method using three different discretization steps
(h = 0.5,0.25,0.125), rising twelve numerical experiences. The columns # var. and # const. mean de number of
variables and constraints, respectively. The next columns refer to the performance measures - number of iterations and
total CPU time in seconds (time for solving the problem, for evaluate the objective and the constraints functions and
for input/output). The computational experiences were made in the NEOS server platform - in this way the selected
machine to run the program remain unknown as well as its technical specifications.

The optimal value reached was ≈ 3E − 03 for all tests. Comparing the general behaviour of the solvers one can
conclude that the IP based method (Knitro) presents much better performance than the SQP method (Snopt) in terms
of the measures used. Regarding the Knitro results, one realize that the Euler’s discretization scheme has better times
for h = 0.25 and h = 0.125 and similar time for h = 0.5, when compared to Runge-Kutta’s method. Another obvious
finding, for both solvers, is that the CPU time increases as far as the problem dimension increases (number of variables
and constraints). With respect to the number of iterations, Snopt presents more iterations as the problem dimension



TABLE 1. Numerical results
Euler’s method Runge Kutta’s method

Knitro

h # var. # const. # iter. time (sec.)

0.5 727 519 113 2.090
0.25 1455 1039 68 2.210

0.125 2911 2079 85 7.240

h # var. # const. # iter. time (sec.)

0.5 728 520 64 1.980
0.25 1456 1040 82 5.550

0.125 2912 2080 70 9.740

Snopt

h # var. # const. # iter. time (sec.)

0.5 727 519 175 4.07
0.25 1455 1039 253 19.2

0.125 2911 2079 252 105.4

h # var. # const. # iter. time (sec.)

0.5 728 520 223 10.52
0.25 1456 1040 219 39.7

0.125 2912 2080 420 406.67

increases. However this conclusion cannot be taken for Knitro - in fact, doesn’t exist a relation between the problem
dimension and the number of iterations. The best version tested was Knitro using Runge-Kutta with h = 0.5 (best CPU
time and fewer iterations), and the second one was Knitro with Euler’s method using h = 0.25. An important evidence
of this numerical experience is that it is not worth the reduction of the discretization step size because no significative
advantages are obtained.

CONCLUSIONS

We solved successfully an optimal control problem by direct methods using nonlinear optimization software based on
IP and SQP approaches. The effort of the implementation of higher order discretization methods brings no advantages.
The reduction of the discretization step and consequently the increase of the number of variables and constraints
doesn’t improve the performance with respect to the CPU time and to the number of iterations. We can point out the
robustness of both solvers in spite of the dimension problem increase.
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