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Abstract 

 The photochromic behaviour of two series of 2,2’-bithiophene azo dyes in THF 

solutions was studied. The photochromic properties and colour constancy were strongly 

dependent on the substitution pattern of the dyes. Under visible irradiation (> 420 nm) while 

some dyes exhibited a significant change in the colour intensity others exhibited an almost 

stable absorption. The photokinetic parameters of these systems are described. 
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1. Introduction 

 Aromatic azo compounds constitute a dominant class of synthetic compounds that 

have been long and widely employed for colouring and printing. The presence of the stable 

chromophoric azo group ( –N=N– ) conjugated with aromatic substituents at the nitrogen 

atoms allows the acquirement of molecules that display intense and highly resistant colours 

that can be tuned over all over the visible spectrum through appropriate ring substitution [1]. 

 The photochemical E-Z isomerization of aromatic azo dyes, in solution or incorporated 

in polymeric matrices, is a well-established phenomenon that has been the subject of intense 

research. Typically, under light irradiation (λ within the broad azo absorption band) the 

thermally stable E-isomer is partially converted to the meta-stable Z-isomer and a 

photostationary equilibrium between the two compounds is attained [1]. Usually when the 

irradiation is ceased the reaction is thermally reversible, although it can be also photoinduced 

with light of an appropriated wavelength. 

 

Scheme 1 

 

 Despite numerous studies performed the mechanism for the interconversion is still 

unclear and two major competitive mechanisms for the isomerization are recognized: the in-

plane inversion mechanism involving the sp-hybridization of one of the azo nitrogens in the 

transition state and a rotational mechanism involving a rotational activated complex [2]. The 

predominance of one mechanism over the other is greatly dependent upon the particular 

substitution pattern of the molecule, the nature of the substituents and the environment [3]. 

 The azoaromatic chromophores enable unique fully reversible and clean 

photoreactions and constitute a valuable photochemical model system. The spatial 

arrangement of the E-isomer molecules makes possible the extension of the electronic π-

conjugation while this is not possible for the Z-isomer which presents the two aromatic rings 

out of the plane. Consequently the thermally stable E-isomer can exhibit a much more intense 

optical absorption than the Z-isomer. In other words, azocompounds can exhibit 
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photochromic properties as a reversible change in the absorbance spectrum can be triggered 

by luminous irradiation. As this can cause an observable loss of colour, this behaviour may be 

undesirable if the azo compounds are intended to be used with colour constancy (e.g. for 

dyeing or printing). 

 The azo isomerization reaction requires a large geometrical change in molecular 

configuration and is therefore sensitive to steric effects. Moreover these molecules show a 

great tendency to aggregate, especially in solvents where they are weakly soluble, leading to 

self-assemblies in which the photo-isomerisation is inhibited [4]. In recent years great 

attention has been directed to the reversible geometric changes that result from the 

photochemical isomerization and the possibility to induce macroscopic motions through the 

interaction of the interconverting forms and the environment where they are incorporated. As 

the reversible structural changes occur at a single-molecule level the phenomenon is 

potentially interesting to the modern nanotechnology for fully photon-controlled applications 

such as photo-switch technologies offering the possibility to control, through photochromic 

reactions, the physico-chemical properties of materials (e.g. fluorescence, electrical 

conductivity, magnetism, permeability, reactivity…) [5]. 

 Most of the azo chromophores belong to the azobenzene class which includes 

compounds with two phenyl rings linked through an azo-bridge. More recently the synthesis 

and the characterization of heterocyclic azo dyes have been extensively reported [6-7]. 

Besides their classic applications in synthetic dyes and pigments, heteroaryl diazo 

chromophores containing five-membered heterocycles (thiophene, pyrrole and thiazole) can 

also behave as organic second-order nonlinear optical (NLO) materials suitable for 

applications such as second harmonic generation [6].  

 Other interesting applications, recently proposed, include memory and recording 

devices, molecular switches, thermochromic, photovoltaic and fluorescent devices, 

supramolecular systems, holographic data storage materials, acid-base and metal sensors and 

active ligands in Pd-catalyzed cross-coupling reactions [6f, 7]. 
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 We have recently reported the synthesis and characterization of thienylpyrrole azo 

dyes as new NLO-chromophores [6e]. These new heterocyclic compounds also exhibit good 

photochromic properties [7c]. These previous studies motivated us to explore the potential of 

new 5’-alkoxy-5-phenyldiazenyl-2,2´-bithiophenes [8] and 5-N,N-dialkylamino-4-

phenyldiazenyl-2,2’-bithiophenes [9] as potential photochromic molecules. Therefore, we 

describe in this paper the photochromic properties of these two series of bithiophene azo dyes.  

 

2. Results and Discussion 

 The new 2,2’-bithiophene azo dyes studied can be divided in two groups according to 

the linkage between the two aromatic rings: 5’-methoxy-5-phenyldiazenyl-2,2’-bithiophene 

dyes 1a-c present the bithiophene linked to the azo group through the 5 position while for 5-

amino-4-phenyldiazenyl-2,2’-bithiophene 2a-e the azo group is bonded to the bithiophene 

nucleus at the 4 position adjacent to an amino substituent (Scheme 2). 

 

Scheme 2 

Table 1 

 

The photochromic behaviour of these molecules was studied in 2.0x10-5 M THF 

solutions by measuring the absorbance of the solution at the maximum wavelength of 

absorption while irradiating with visible light from a 150 W Ozone free Xenon lamp, 

equipped with a water filter and a long-pass filter, Schott GG 420, at 20ºC. 

In THF 2,2’-bithiophene azo compounds 1-2 afforded deeply coloured solutions 

(yellow to purple) with molar absorptivities ranging from 11000 to 32500 M-1cm-1. The nitro-

substituted dyes displayed an intense absorption maxima between 512-545 nm while the acid 

and ester substituted dyes exhibited a maximum wavelength of absorption at lower 

wavelengths, 472-498 nm (Table 1). The λmax of 2,2’-bithiophene azo compounds 1-2  shows 

a positive solvatochromic effect. For compound 2b the λmax changed from 477 nm in hexane 

to 510 nm in DMSO (Figure 1). 
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Figure 1. Absorption spectra of dye 2b in different solvents. 

 

Under visible irradiation (> 420 nm) the two sets of compounds showed very different 

behaviour (Table 1). Irradiation of 2.0x10-5 M THF solutions of azo dyes 1a-c led to a very 

fast and pronounced decrease of the maximum absorbance at longer wavelengths and, at the 

same time, an increase in the band located at 400 nm, indicating the transformation of the E-

isomer into the Z-isomer [10]. When the irradiation ceased the system returned to its initial 

highly coloured state with different rates depending on the substituents present in the 

molecule. The change in the visible spectra of dye 1b is depicted in Figure 2. When the 

irradiation was stopped the inverse situation was observed, the band at 400 nm decreased and 

the band at 495 nm increased. The absorbance variation observed under visible irradiation of 

dyes 1a-c varies from 0.23 to 0.28 absorbance units corresponding to a loss of 35 to 50% of 

the initial absorbance. The procedure was consequentially repeated and the behaviour was 

fully reproducible indicating that under these limited experimental conditions no degradation 

was observed. The kinetics of the colouration and decolouration process of dye 1c is shown in 

Figure 3. 

 

Figure 2. Absorption spectra of dye 1b under visible irradiation and in the dark 

 

Figure 3. Irradiation/dark cycles for dye 1c. 

 

 For compounds 1a-c, the decrease in the absorbance upon visible irradiation was very 

fast (E-Z transformation promoted by visible light). The E-Z isomerization kinetic was mono-

exponential with a 0.17 s-1 constant rate, which indicates that, under the experimental 

conditions, in less than 30 seconds a photostationary equilibrium was attained. The kinetics of 

the thermal Z-E back reaction (colouration, in the dark, at room temperature) was slower but 

also mono-exponential which is consistent with a two species system. The colouration rates 
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were effectively independent on the nature of the substituents present on the benzene ring. For 

these 3 compounds the half-time life of the Z-isomer varied between 18 to 69 s. 

As expected the higher absorbance variations were observed with the slower systems. 

For a system constituted by two E-Z isomers, where the thermally stable one is highly 

coloured, under continuous visible irradiation conditions, the decrease in the absorbance at the 

maximum wavelength of absorption of the E isomer is inversely related to the kinetic rate of 

the colouration process (Z → E) [11]. When compared to similar azo thienylpyrrole dyes this 

set of compounds showed slower thermal colouration rate constants (Table 1) [7c]. When the 

system was irradiated with UV/Vis light (without the Schott GG 420 filter) the absorbance 

decrease was, as expected, lower since the UV light promotes the Z → E conversion (Figure 

4). 

 

Figure 4. Irradiation/dark cycles for compound 1b under visible and UV/Vis irradiation  

 

The activation energy of the thermal colouration step for compounds 1a and 1b, 

determined from the kinetic rates observed at 20, 25, 30, 35, 40ºC,  were found to be 81 and 

77 kJ/mol respectively, which are similar to the value for azobenzene (94 kJ/mol) or other 

heteroaromatic azo dyes like 2-(phenylazo)imidazoles (79 kJ/mol) or phenylazopyridines (90 

kJ/mol) although higher than azo thienylpyrrole dyes (56 kJ/mol) [7c]. 

 

Bithiophene azo dyes 2a-e exhibited very weak photochromic properties at room 

temperature, in THF solutions (Table 1). Under irradiation with visible light, a 2.0x10-5 M 

solution of compound 2a showed no absorbance decrease, immediately after the solution 

preparation and a 20 % decrease after one day; compound 2b showed a modest photochromic 

activity (3%). For the other compounds (2c-e) the absorbance decrease was smaller than 1%.  

The photochromic behaviour of azo compounds 1-2 was solvent dependent. While in 

chloroform, ethyl acetate, acetone, DMSO or methanol the photochromic response was 

essentially similar to that observed in THF, different results were observed in less polar 
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solvents like toluene or n-hexane. In this last solvent all compounds showed reversible 

photochromic properties. However, while the irradiation of azo dyes 1a-c solutions led to 

absorbance decreases of 47-54%, for compounds 2a-e only small changes in the absorbance 

(from 4 to 20%) were registered.  

As compounds 2a-e exhibit modest fluorescence, precluding the influence of a 

competing relaxation process, the weak photochromism of these dyes could be due to the 

formation of aggregates, usual in azobenzene dyes, which might inhibit the photochemical 

transformation. Since after the visible irradiation ceased a monoexponential absorbance 

increase was observed we concluded that only two species were present in the solution. 

Moreover the positive solvatochromism exhibited by these compounds was expected and no 

λmax change was observed when changing the dye concentration. Finally for 2x10-5 to 10-4 M 

concentrations no deviation from Lambert-Beer’s law was observed. These results indicate 

that the weak photochromic behaviour of dyes 2a-e should not be assigned to the formation of 

aggregates. The difference in the photochromic behaviour between azo dyes 1a-c and 2a-e 

may be related to the steric hindrance of the adjacent substituted amino group, present in 

compounds 2a-e, leading to the restrain of the floppiness of the molecule [1b, 12]. 

 

3. Experimental 

 The synthesis of azo dyes 1a-c and 2a-e was recently reported [8, 9]. For 

measurements of λmax, Aeq and k∆ under continuous Vis irradiation, 2.0x10-5 M THF solutions 

were used. Irradiation experiments were made using a CARY 50 Varian spectrophotometer 

coupled to a 150 W Ozone free Xenon lamp (6255 Oriel Instruments).  The light from the 

UV-Vis lamp was filtered using a water filter (61945 Oriel Instruments) and a long-pass filter 

(Schott GG 420) at 20ºC and carried to the spectrophotometer holder, perpendicular to the 

monitoring beam using a fibre-optic system (77654 Oriel Instruments). A 40 Wm-2 light flux, 

measured with a Goldilux photometer with a UV-A probe was used. A thermostated (20ºC) 

10 mm quartz cell containing the sample solution (3.5 ml) and equipped with magnetic 

stirring was used. Three spectrokinetic parameters, normally quoted when describing the 
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properties of photochromic compounds, were evaluated: maximum wavelength of absorption 

(λmax), thermal bleaching rates (k∆) and maximum absorbance attained at λmax (Amax). The 

colouration kinetics was then studied in the dark. The thermal couloration curves were 

analysed evaluating the fitting of the experimental data to the monoexponential equation:  

01)( AeAtA kt += −  

where A(t) is the absorbance at λmax at any instant t, A1 a proportional factor, k the thermal 

colouration rate and A0 the absorbance in the dark when time approaches infinity. The model 

was found to accurately fit our data when the quadratic residual errors were 10-6 or less.  

 

4. Conclusion 

2,2’-bithiophene azo compounds 1a-c are highly coloured compounds that exhibit 

significant photochromic properties. Under visible irradiation (>420 nm) a photostationary 

state is attained in less than 30 s corresponding to a 35-50% conversion of the E-isomer to the 

Z-isomer. When the irradiation ceases the system returns readily to the initial state. For these 

dyes the thermal Z-E back transformation kinetic was found to be monoexponetial with a half-

time between 18 to 69s, similar to other diaromatic azo compounds. On the contrary 

differently substituted 2,2’-bithiophene azo compounds 2b-e exhibit weak photochromic 

properties. In medium to polar solvents, under visible irradiation, almost no absorbance 

changes were observed. The latter compounds although not interesting for photon-controlled 

applications can be potentially useful for dying and printing uses where colour constancy is 

intended. 
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Table 1. Spectrokinetic properties under continuous visible irradiation: maximum wavelength 

of absorption (λmax), maximum absorbance (Amax), absorbance variation (∆Abs), thermal 

bleaching rate (k∆) and halftime life (t1/2 ) of azo dyes 1a-c, 2a-e and a thienylpyrrole azo 

dye[7c]. 

 

Dye λmax (nm) Amax ∆Abs k∆ (s-1) t1/2 (s) 

1a 475 0.55 0.28 (50%) 0.010 69 

1b 495 0.52 0.23 (44%) 0.021 33 

1c 512 0.65 0.23 (35%) 0.039 18 

      

2a 472 0.36 0.072 (20%) 0.032 22 

2b 498 0.48 0.014 (3%) - - 

2c 501 0.22 0.003 (< 1%) - - 

2d 534 0.49 - (< 1%) - - 

2e 545 0.37 - (< 1%) - - 

N
N N

S

O2N

 

 

490 

 

0.58 

 

0.13 (22%) 

 

0.32 

 

2.2 
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Figure 1. Absorption spectra of dye 2b in different solvents. 
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Figure 2. Absorption spectra of dye 1b under visible irradiation and in the dark 
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Figure 3. Visible irradiation/dark cycles for dye 1c.  
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Figure 4. Irradiation/dark cycles for compound 1b under visible and UV/Vis irradiation 

 


