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Introduction 
In recent years, there has been an increasing interest in the dynamical systems approach 
to cognitive science that challenges the more traditional, computational view on 
cognition ([1], [2], [3]). The heart of the dynamic approach is the hypothesis that natural 
cognition embedded in a nervous system and in an environment unfolds continuously in 
time as the result of the complex interplay between a variety of internal and external 
forces. Proponents of this new direction argue that cognitive processes can be 
conceptualized in terms of position, distance and trajectories in the space of possible 
states of the system. Consequently, the primary focus of their theoretical and empirical 
research program is on understanding the nature of change in time. The dynamic 
hypothesis strongly contrasts with the computational approach that explains cognitive 
behaviour as a rule-based manipulation of static internal representations.  

The theory of nonlinear dynamical systems is the mathematical framework that 
offers essential concepts and tools such as attractor, repeller, stability, bifurcation, 
trajectory in state space and the like. However, these concepts are certainly necessary 
but not sufficient for a dynamical systems approach to higher cognitive capacities. The 
problem is that flexible and intelligent behaviour very often depends on past and future 
events of the environment that are not represented in the immediate stream of sensory 
signals. The forces that are supposed to shape the unfolding trajectories are thus not 
available all time.  What is needed is the notion of complex persisting inner states that 
allow the cognitive agent, for instance, to compensate for temporally missing sensory 
input, or to anticipate future environmental inputs that may inform the decision about a 
specific goal-directed behaviour [1].  

Dynamic Field Theory or DFT provides a theoretical framework that bridges the 
representational gap in the dynamic system approach ([4], [5]). Dynamic fields 
formalized by differential equations have been originally introduced by Wilson and 
Cowan [6] and Amari [7] in the 1970’s as simplified mathematical models for pattern 
formation in neural tissue. The architecture of this model family reflects the hypothesis 
that strong recurrent interactions in local populations of neurons form a basic 
mechanism for cortical information processing.  This hypothesis is supported by 
anatomical and psychological findings showing that a cortical neuron gets its largest 
input from neighbouring cells. The recurrent interactions cause non-trivial dynamic 
behaviour in neural populations. Most importantly, population activity which is initiated 
by time-dependent external signals may become self-sustained in the absence of any 
external input. Such attractor states of the population dynamics may be used by the 
nervous systems to guide complex behaviour that goes beyond a simple input-output 
mapping. On this view, DFT complements the dynamic approach by adding the notion 
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of sub-symbolic dynamic representations that are consistent with fundamental principles 
of cortical information processing.  

In the following we briefly discuss representative examples that shall illustrate 
the basic concepts of DFT and its application in different cognitive domains (for a 
recent survey of the mathematical treatment see [5]). As embodied validations of the 
approach, we include studies in which autonomous robots were endowed with some 
cognitive capacities such as decision making, memory, action understanding or 
anticipation. The reader is encouraged to visit the original publications for proper 
treatment.  
 
Basic concepts 
Dynamic fields are defined over metric dimensions that in most applications reflect 
parameters of the experimental setup such as for instance visual space, object features or 
movement parameters. A localized peak of activation within the field represents metric 
information about the underlying dimension. In analogy to the concept of neural 
population coding, the localized peak may be interpreted as the activation pattern of a 
pool of neighbouring neurons with similar tuning properties in an otherwise inactive 
population [8].    The peak evolves under the influence of time-dependent external input 
but is mainly shaped by the recurrent interactions within the population. Due to the 
interactions the peak is self-sustained and may thus serve to memorize information.  
However, in order to perform a working memory the field dynamics has to be bi-stable. 
The attractor state of a persistent firing pattern coexists with a stable homogenous 
activation distribution that represents the absence of information. A sufficiently strong 
transient input specifying   a particular instance of the metric dimension is able to 
“switch on” the memory function by destabilizing the uniform rest state.  A suitable 
inhibitory signal, on the other hand,   may destabilize the excited state, resulting in a 
decay of activation back to resting state.  The critical parameter that decides whether or 
not the uniform state becomes unstable is input strength. Below a certain threshold, 
inhomogeneous solutions of the field dynamics exist that are mainly input driven. In 
many applications this regime is exploited to represent for instance ambiguous prior 
information about the dimension spanned by the field. Much like prior distributions in 
the Bayesian sense, multi-modal patterns of subthreshold activation may encode the 
probability of choices [9].    

Within the DFT framework, the existence of a memory function is closely linked 
to decision making. A self-sustained activation peak is the result of the interplay 
between excitatory and inhibitory forces within the field. Excitatory interactions 
between neighbouring neurons are counterbalance by lateral inhibition. Since inhibitory 
interactions dominate at larger distances, a competition process takes place whenever 
two or more suprathreshold inputs are simultaneously applied. At the field site that 
integrates the highest level of sensory or other evidence a single activation peak will 
emerge. It suppresses the activation elsewhere in the field below resting level. Once the 
stable attractor state has been reached, the decision represented by the peak location is 
protected against noise and fluctuations in the input stream. This does not mean, 
however, that the peak is completely immune against change. Localized input that 
spatially overlaps with the peak position causes the peak to drift in the direction of this 
input.  Mathematically,   the attractor can be described as being continuous along the 
dimension spanned by the field.  This property of the field dynamics has been exploited 
for instance to explain and apply the capacity of tracking time-varying input in real time 
([10], [11]).  
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Although the formation of spatially localized peaks is certainly the backbone of 
most DFT-based models thus fare, it is important to note that the field dynamics - if 
properly tuned - may exhibit other types of self-organizing patterns (e.g., .travelling 
pulse and wave, active transient etc., see [12] for a recent overview) that play an 
important role in some applications of the dynamic field approach to cognition (see the 
examples below).  
 

 
Applications in Cognitive Science: Action, Perception and Reasoning 
The dynamic field approach has been first developed and applied in the context of 
simple sensorimotor decisions ([13], [14], [15]). Timed-movement initiation paradigms 
reveal that plans for goal-directed arm or eye movements evolve continuously in time. 
Early during action preparation an externally forced decision to move reflects the prior 
knowledge about the task (e.g., number and probability of possible targets) whereas 
later in time the decision is dominated by the visual information specifying the target. In 
the DFT model [14], a localised activation peak in the movement parameter field 
evolves in time under the influence of the two inputs sources represented by activation 
patterns in two connected fields. Due to the constant input from the task field,   the build 
up starts from a pre-activated initial state reflecting prior task knowledge.  Since the 
level of pre-activation affects the rate at which the activation peak rises, all classical 
effects of task environment on reaction time can be modelled.  Moreover, the field 
model also accounts for experimental findings showing that not only the informational 
content (e.g., number and probability of choices) but also the metric of the movement 
parameter space matters. A simple example is a two choice task in which the relative 
distance between the possible directions of the movement is systematically varied. A 
general experimental finding is that reaction time decreases with decreasing distance. In 
the model, the two-choice setting lead to a bimodal preshape. For metrically close 
directions, however, the two preshape inputs start to overlap, resulting in a higher level 
of pre-activation. As a consequence, the buildup of the peak in response to a specific 
input is faster compared to the case of two movement directions metrically fare from 
each other.  

It is worth mentioning that the dynamic field concepts can be generalized to the 
case of multiple movement parameters by introducing multidimensional activation 
fields. A two-dimensional field spanned over movement direction and movement 
amplitude has been used for instance to explain differences in the process of 
specification of the two parameters as revealed in precuing paradigms [14].  
 

The DFT approach to sensorimotor decisions has been extended to address 
fundamental questions in developmental cognitive science. An excellent example is the 
DFT model of Piaget’s classic ‘A-not-B’ error [16]. In this task, an infant is faced with 
two similar opaque containers with lids. The experimenter hides a toy under the lid at 
location A and the infant is trained to reach for the toy. If after several A trials the 
object is hidden for the first time at location B and a short delay is imposed, younger 
infants nevertheless reach toward container A. This typical ‘A-not-B’ error is absent in 
older infants. The DFT model explains this change in behaviour as a shift from an 
input-driven regime of decision making in younger infants to an interaction-dominated 
regime in older children (but see [17] for a recent refinement of the model). The motor 
decision field is spanned over the space of reachable directions. It evolves under the 
influence of the specific input representing the location of the toy, input from the task 
field representing the perceptual layout of the work space, and input from the preshape 
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field representing the memory trace of previous A-reaches. If the decision field is input-
driven, that is, the transient input representing the toy at B does not reach the threshold 
for triggering the cooperative forces within the population, the activation pattern at the 
respective field site will decay during the delay towards resting level. As a result, 
movement history represented by the preshape field will start to dominate movement 
selection, leading to the ‘A-not-B’ error. If, by contrast, the field is able to self-stabilize 
activation patterns, the evolving peak at the B location will suppress the conflicting 
input from the preshape field.  

During the delay period between the presentation of the cue at a certain location 
and movement onset, the peak serves as spatial working memory. However, since the 
peak attractor is continuous, spatially overlapping preshape input will cause a 
continuous drift of the localized activity pattern whenever there exists no additional 
input  that may ‘fix’ the peak at the cued position. The predicted distortion over time of 
spatial memory has been indeed observed in experiments with goal-directed actions to 
remembered locations with no salient location cues [18]. 

 
Cognitive vision is another attractive area for DFT research [19]. The basic 

concept of self-stabilized internal representations provide the means to cope with some 
of the fundamental problems any cognitive agents has to solve in order to organize goal-
directed behaviour  in  a continuously changing world. Very importantly, the system has 
to compensate for long and unreliable delays involved in the processing of visual 
information about moving objects. As revealed in psychophysical experiments, the 
position percept very often does not agree with the physical measurements. 
Furthermore, a continuous stream of sensory signals that may guide behaviour is not 
guaranteed in cluttered environments. There is thus a need for mechanisms that allow 
the system to extrapolate past trajectory information into the future.  

The DFT-based model of object location in visual space has been originally 
developed to explain nonlinear interaction effects found in neuronal population activity 
of primary visual cortex [20]. It has been later extended to bridge the gap to the 
perceptual level. The model accounts for various systematic localization errors observed 
with moving and stationary targets ([21], [22], [23], [24]).  In response to an object in 
real or apparent motion, the field develops a self-stabilized travelling pulse of activation 
that locks to the stimulus. Its peak position is taken as a neural correlate for the location 
percept. Due to the lateral interactions within the population, neurons encoding future 
stimulus positions become pre-activated, leading to a path-dependent facilitation of 
processing. In the model, the latency of the suprathreshold population response to the 
external input may be further reduced by integrating additional preshape input from 
other information sources such as for instance actions plans directed toward the moving 
object. Moreover, like a physical object in motion, the internal representation of target 
position cannot be halted instantaneously upon stimulus offset but continues to travel 
for some time. In line with experimental findings in position judgement tasks, the model 
predicts a perceptual overshooting at the end of the motion trajectory whenever the 
cooperative forces within the population are sufficiently strong. The extent to which the 
internal representation extrapolates past trajectory information depends on a single 
model parameter that controls the interplay between excitation and inhibition within the 
field. If properly tuned, the self-organizing wave may fill in missing trajectory 
information whenever the sensory input is temporally disrupted due to occluding 
surfaces for instance [25].  
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Decision making, memory and object permanence are all examples of basic 
cognitive functionalities. Recently, attempts have been made to extend the DFT 
approach to higher cognitive capacities such as off-line reasoning and prediction that are 
often crucially involved in the control and coordination of real action in real time. To 
give a concrete example from the domain of social cognition, a fluent and efficient 
coordination of actions and decisions among partners in a joint action task requires that 
each individual is able to understand others’ action goals. The DFT model of goal 
inference [26] implements the idea that action simulation supports action understanding.  
Without the need to rely on any explicit symbolic communication, we understand the 
purpose of observed actions by internally replicating action effects using our own motor 
repertoire. The model has been validated in tasks which involve goal-directed reaching-
grasping-placing sequences. The model architecture consists of various reciprocally 
coupled dynamic fields that represent in their firing patterns action means, action goals 
and contextual cues. In the action simulation layer (ASL) learned action chains 
composed of populations encoding different motor acts exist that are linked to specific 
placing goals or end states. Individual chains may be preshaped by connected 
populations representing contextual cues and prior task information. Through mappings 
between populations encoding congruent motor acts in the action observation (AOL) 
and the action simulation layer, the chain is triggered whenever input from AOL 
indicates the observation of a specific motor act. The self-stabilizing properties of the 
neural populations forming the chain ensure that the associated goal representation 
reaches a suprathreshold activation level even in cases where only partial visual 
information about the action performed by another person is available (e.g., only the 
reaching toward the object is observed). In a joint action context, the information about 
the inferred goal may then be used by the observer to select an appropriate 
complementary action sequence.  

It is worth stressing that the dynamic field model within which the high-level 
reasoning capacity is realized represents a distributed but fully integrated dynamical 
system that emerges from sensorimotor origins. The same action chains that support 
overt motor behaviour are covertly used during action observation to make sense of the 
behaviours of others. The populations forming the chains encode entire goal-directed 
motor primitives such as grasping and placing that abstract from the fine details of the 
hand movements.  For such a high-level motor vocabulary the metric structure of the 
underlying space, which is a core concept of DFT, is not directly observable. However, 
the metric may still be defined operationally by the degree of overlap of neuronal 
representations. In the present implementations, a motor acts such as grasping is 
represented by a localized activation pattern in an otherwise inactive population. The 
pool of grasping neurons that becomes activated above threshold gets input from 
connected populations. In a modelling attempt to explain the development of goal-
directed chains, it has been recently shown that the interplay of the field dynamics and a 
Hebbian  learning dynamics  may result in the emergence of distinct, non-overlapping 
subpopulations of grasping  neurons that become linked during learning to specific goal 
representations [27]. In other words, depending on the ultimate goal of the action 
sequence in which the grasping behaviour is embedded, the localized activity pattern in 
the grasping field will evolve at different locations of the field. On this view, the 
similarity on the goal level defines the metric of the field, that is, the extent to which 
subpopulations will overlap. The development of such goal-directed representations has 
important implications for cognitive behaviour since it allows individuals to act at the 
time of the grasping in anticipation of others’ motor intentions.   
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Applications in Robotics 
An active area of research is the validation of the neuro-plausible mechanisms and 
concepts of the DFT approach to cognition in autonomous artificial agents. 
Implementations on robots controlled in closed-loop by sensory information provide 
feedback about hidden assumptions and missing links to the sensory and motor surfaces.  
A major challenge is to demonstrate that inner persistent states and internal simulations 
are not a costly information processing bottleneck [28] but actually support fluent real-
world behaviour.  

DFT has been first introduced into the domain of robotics in navigation tasks 
with the goal to modify the behaviour of an autonomous vehicle through memorized 
sensory information ([29], see [30], [11], [31] for follow up studies).  In the DFT-based 
control architectures, the fields are spanned over the heading direction of the robot 
relative to an arbitrary but fixed frame of reference.  The path planning field integrates 
on-line information about the target location and the location of obstacles coming form 
on-board sensors. In addition, it receives input from an object memory field that 
contains self-stabilized activation peaks. They represent the location of previously 
detected obstacles that are currently invisible to the sensors. This memorized 
information is coupled into the movement planning field in the form of inhibitory input, 
defining undesirable heading directions. Since the field dynamics supports the existence 
of a single localized activation peak, decision can be made and stabilized even in 
navigation tasks with several potential targets. The demonstrations on vehicles equipped 
with low-level sensors and controlled by non-linear attractor dynamics demonstrate that 
the navigation behaviour in cluttered environments is quite smooth and robust [11].  
The robustness is a direct consequence of the strong recurrent interactions within the 
fields that amplify and stabilize noisy and corrupted sensory inputs.  

Smooth real-time tracking of a moving target (e.g., another agent) is possible by 
exploiting that the self-stabilized activation peak in the target layer of the control 
architecture follows the continuously moving sensory input.  This sensor-dependent 
tracking process will be disrupted, however, if the target disappears behind an occluding 
surface. The solution of this problem offered by DFT is a self-stabilized wave which 
travels in the direction of the moving target with a speed that can be controlled 
depending on the task. For instance, to anticipate future locations of the moving target 
the speed of the travelling wave may be chosen slightly faster than the actual velocity of 
the target. This predictive mechanism has been applied in a joint action task in which 
two agents (robot-robot or robot-human teams) have to search objects in a common 
workspace with the goal to transport them to a predefined area ([5], [32]). To guarantee 
an efficient division of the search space without the help of direct communication, each 
teammate has to infer from the partner’s motion future positions and possible action 
goals. The self-stabilized wave representing the predicted motion trajectory couples into 
the decision field of the observing robot as inhibitory input. As a consequence, the 
decision about the object toward which the robot will move appears to be biased by 
sensed or memorized targets in other locations of the workspace. 

The neuro-cognitive mechanisms implemented by the dynamic field approach to 
cognition represent a promising research direction for the domain of human-robot 
interaction (HRI). The basic idea followed by a number of studies ([33],[34],[35],[38]) 
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is that in order to advance towards socially aware robots able to cooperate with humans 
in a natural and efficient manner, the robot design should reflect similar processing 
principles.  

An example on the perceptual level is the interactive learning of labels for 
different objects that are manipulated in joint action tasks [36]. The dynamic field 
architecture consists of various coupled two-dimensional feature label fields that get 
input from the camera system. Object features like colour, shape and size represent one 
dimension of a field whereas the object label is represented along the second dimension. 
The output of all label feature fields is integrated in a decision layer that contains one 
node for each label. There exist lateral connections between the feature label fields that 
ensure that during the recognition process the same labels belonging to different 
features fields excite each other. Feedback connections from the output field, on the 
other hand, guarantee that activation peaks in the feature label fields that do not match 
the decision in the output field are extinguished. During the supervised training phase, a 
correct label is given to the robot if recognition fails. Learning within the distributed 
network takes place in form of a buildup of preshape (or memory trace) at positions 
where a peak has emerged during successful recognition trials.   

The DFT model of action understanding has been integrated in control 
architectures to endow robots with the capacity of goal-directed imitation ([5], [37]). It 
has been validated in the context of grasping-placing sequences. The defining feature of 
the three-layer field architecture is a learned mapping from motor primitives in the 
action observation layer onto motor primitives in the action execution layer. It 
implements a matching on the goal and not on the movement level. The architecture can 
thus cope with differences in embodiment, task constraints and motor skills between 
teacher and robot. A self-stabilized activation peak representing a certain goal biases the 
decision process in the action execution layer toward the selection of motor primitives 
that can be used by the robot to achieve that goal. Moreover, the existence of goal-
directed action chains in the middle layer of the field architecture allows the robot to act 
on a goal that it has to infer since the end state of the sequence was hidden from view or 
the user accidently failed to place the object at the desired location. If the meaning of an 
action is understood, further knowledge may be transferred from an experienced teacher 
to the robot in imitation paradigms. For instance, knowledge where o place a certain 
class of objects (e.g., defined by colour or shape) may be acquired and will be 
represented in learned synaptic links between neural populations encoding the goal and 
specific object features.  

For cooperative joint tasks, imitating the human behaviour is normally not 
beneficial for the robot and the team. The interpretation of observed actions in terms of 
goals should lead to the selection of an appropriate complementary behaviour. Both 
processes, goal inference and the action selection, depend on the situational context.  A 
dynamic field architecture that establishes a context dependent mapping from observed 
actions onto complementary actions has been recently developed and tested in a task in 
which a robot and a human jointly construct a toy robot [38]. The state of the 
construction that defines which sub-goals are currently available for the team is 
represented by neural populations in the common sub-goal layer (CSGL) of the field 
architecture. If the input from this layer and from the intention layer (IL) representing 
the inferred goal of the partner converge on the representation of a particular action 
sequence in the action execution layer (AEL), this action sequence will normally win 
the competition process between all possible actions.  If a mismatch between the 
inferred goal and the possible   sub-goals exist, the robot is able to detect this error since 
an activation peak in the error monitoring layer (EML) will automatically appear. A 
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selection of communicative gestures like pointing to ‘explain’ the error to the human 
partner may then constitute an appropriate complementary behaviour. Interestingly, how 
social the robot behaves can be controlled by a simple adaptation of the synaptic 
weights form the intention layer to the action selection layer. If the weights are 
relatively weak, the action selection process of the robot will be dominated by 
information sources other than the behaviour of the partner.  
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