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Abstract 

4,5,6-Trimethoxyisatin was crystallized from water to give dark red needles that were 

characterized by NMR and IR spectroscopy, differential scanning calorimetry (DSC), 

thermogravimetric analysis (TGA), single-crystal X-ray diffraction (XRD) and hot-stage 

microscopy.  
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1. Introduction 

In the course of our study of indole alkaloids [1] and their precursors an unexpected melting 

behavior of purified crystals of 4,5,6-trimethoxyisatin [2] (Figure 1) attracted our attention. 

The observed anomaly consisted of an apparent transformation of the aspect of crystals during 

the melting process. This led us to explore the thermal and structural behavior in more detail. 

The compound was synthesized as described in the literature [2], characterized by the usual 

methods and was recrystallized from water to yield red needles. These crystals were studied 

using TGA and DSC. The complementary technique of hot-stage microscopy was also 

applied. Crystals were further studied using single-crystal X-ray diffraction. 
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Figure 1 - Structure and atom numbering of 4,5,6-trimethoxyisatin 
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2. Experimental  

2.1. NMR 

1H NMR spectrum was recorded at 300MHz and the 13C NMR spectrum was determined at 

75.4 MHz using a Varian Unity Plus Spectrometer. Double resonance, heteronuclear multiple 

quantum coherence (HMQC) and heteronuclear multiple bond correlation (HMBC) 

experiments were carried out for complete assignment of proton and carbon signals in the 

NMR spectrum. IR spectrum was registered on a Perkin Elmer FTIR-1600. 

IV(Nujol mull), ν: 3313, 1759, 1692, 1623 cm-1. 1H NMR (DMSO-d6, 300 MHz): δ 10.91 

(s,1H, NH), 6.24 (s, 1H, H-7), 4.01 (s, 3H, 4-OMe), 3.89 (s, 3H, 6-OMe), 3.61 (s, 3H, 5-

OMe). 13C NMR (DMSO-d6, 300 MHz): δ 178.73 (C-3), 162.55 (C-6), 160.46 (C-2), 152.93 

(C-4), 148.94 (C-7a), 135.38 (C-5), 102.70 (C-3a), 91.88 (C-7), 61.63 (4-OMe), 61.02 (5-

OMe), 56.83 (6-OMe). 

 

2.2. Single-Crystal X-ray Diffraction 

A suitable single-crystal of 4,5,6-trimethoxyisatin was manually harvested from the 

crystallization vial and was mounted on a Hampton Research CryoLoop with the aid of a 

Stemi 2000 stereomicroscope equipped with Carl Zeiss lenses and using FOMBLIN Y 

perfluoropolyether vacuum oil (LVAC 25/6) purchased from Aldrich [3].  Data were 

collected at 150(2) K on a Bruker X8 Kappa APEX II charge-coupled device (CCD) area-

detector diffractometer (Mo Kα graphite-monochromated radiation, λ = 0.71073 Å) controlled 

by APEX2 software [4]. The equipment used to characterize samples included an Oxford 

Cryosystems Series 700 cryostream monitored remotely using the Cryopad [5] software 

interface. Images were processed using the software package SAINT+ [6] and data were 

corrected for absorption by the multi-scan semi-empirical method implemented in SADABS 

[7].  

 

2.3. Differential scanning calorimetry (DSC) 

Differential scanning calorimetry measurements were performed using a Mettler DSC 821e, 

calibrated with indium to ensure the accuracy of the calorimetric scale. Weighed samples 

(0.5–1.5 mg) were characterized in sealed 40 µL aluminium cans with perforated lids and 

subjected to thermal analysis under a flowing argon atmosphere (35 mL min−1). In the 

preliminary phase of the study a variety of experimental conditions were applied to optimize 

heating and cooling rates for observation of the thermal events. Selected samples were heated 

from room temperature to 225 oC at a rate of 10 oC min−1. These samples were subsequently 
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cooled to −60 oC at a rate of 5 oC min−1. A second heating program, between −60 oC and 225 
oC at a rate of 10  oC min−1 was then applied.  

 

 

2.4. Thermogravimetric studies (TG) 

Samples for thermogravimetric analysis were placed inside open platinum crucibles and 

studied using a Rheometric Scientific TG1000 thermobalance operating under a flowing 

argon atmosphere (28 mL min−1). A heating rate of 10 ºC min−1 was used and all samples 

were studied between 30 and 400 ºC. 

 

2.5. Hot stage microscopy studies   

A small number of dry crystals were mounted between a glass slide and a cover slip, placed 

on a Mettler FP 82 hot stage and observed with a polarized light Olympus BH2 microscope 

equipped with a digital camera. The calibration of the temperature scale was carried out in 

accordance with the manufacturer’s instructions. The samples were heated to complete 

melting at a rate of 10 ºC min−1, fast cooled to room temperature at about 40 ºC min−1 and re-

heated again at 10 ºC min−1. 

 

3. Results and discussion 

3.1. Crystal Structure Description 

The structure was solved in the centro-symmetric P21/c space group using the direct methods 

algorithm implemented in SHELXS-97 [8,9], which allowed the immediate location of the 

vast majority of the atoms belonging to the crystallographically independent molecule.  All 

remaining non-hydrogen atoms were located from difference Fourier maps calculated from 

successive full-matrix least squares refinement cycles on F
2 using SHELXL-97 [9,10]. All 

non-hydrogen atoms were successfully refined using anisotropic displacement parameters. 

Even though all hydrogen atoms bound to carbon and nitrogen were clearly visible in 

difference Fourier maps, these have been located at their idealized positions using appropriate 

HFIX instructions in SHELXL (43 for the aromatic and the N–H moiety, and 137 for the 

terminal methyl groups) and included in subsequent refinement cycles in riding-motion 

approximation with isotropic thermal displacements parameters (Uiso) fixed at 1.2 (for the 

former families of hydrogen atoms) or 1.5 (for the methyl moieties) times Ueq of the carbon 

atom to which they are attached.  The final difference Fourier map synthesis showed the 

highest peak (0.429 eÅ-3) and deepest hole (-0.261 e Å-3) located at 0.65 Å from C(3) and 

1.17 Å from C(1), respectively. 
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Information concerning crystallographic data collection and structure refinement details is 

summarized in Table 1. 

 

Table 1 - Crystal and structure refinement data for 4,5,6-trimethoxyisatin. 

  

Formula C11H11NO5 
Formula weight 237.21 
Crystal system Monoclinic 
Space group P21/c 
a/Å 3.8384(9) 
b/Å 24.573(5) 
c/Å 11.015(3) 
α/º 90 
β/º 97.928(14) 
γ/º 90 
Volume/Å3 1029.0(4) 
Z 4 
Z’ 2 
Dc/g cm-3 1.531 
µ(Mo-Kα)/mm-1 0.123 
Crystal size/mm 0.40×0.10×0.08 
Crystal type Red needles 
θ  range 3.74 to 33.14 
Index ranges -5 ≤ h ≤ 5 

-37 ≤ k ≤ 37 
-16 ≤ l ≤ 16 

Reflections collected 26099 
Independent reflections 3822 (Rint = 0.0500) 
Completeness to θ = 33.14º 98.1% 
Final R indices [I>2σ(I)]a,b R1 = 0.0474 

wR2 = 0.1227 
Final R indices (all data)a,b R1 = 0.0814 

wR2 = 0.1396 
Weighting schemec m = 0.0729 

n = 0.0933 
Largest diff. peak and hole 0.429 and -0.261 eÅ-3 
  

  

a 1 /o c oR F F F= −∑ ∑  

b ( ) ( )
2 22 2 22 /o c owR w F F w F   = −      ∑ ∑  

c ( ) ( )
22 21/ ow F mP nPσ = + +   where ( )2 22 / 3

o c
P F F= +  
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The derivative 4,5,6-trimethoxyisatin crystallizes in a manner similar to that observed for the 

parent and previously-characterized isatin molecule [11] at 150 K in the centro-symmetric 

P21/c space group with the asymmetric unit comprising a single molecular unit as depicted in 

Figure 2.  It is interesting to note that the three methoxy substituent groups impose a 

considerable steric hindrance to the orderly packing in the solid state in 4,5,6-

trimethoxyisatin, ultimately leading to an overall deformation of the molecule.  Indeed, while 

in isatin the two conjugated rings are almost co-planar (with an average dihedral angle of only 

about 0.3º) [11], in 4,5,6-trimethoxyisatin the plane of the benzene ring is considerably tilted 

(by ca. 5.6º) from that containing the heterocyclic moiety. 

 

 

 

 

Figure 2 – Schematic representation of the molecular unit of 4,5,6-
trimethoxyisatin.  Non-hydrogen atoms are represented as thermal ellipsoids 
drawn at the 80% probability level and showing the labelling scheme.  Hydrogen 
atoms are drawn as small spheres with arbitrary radii. 

 

Individual molecules of 4,5,6-trimethoxyisatin interact in the solid state via strong and highly 

directional N–H···O hydrogen bonds [N1–H1···O2i, d(D···A) = 2.7922(15) Å with 

∠(DHA) = 147º; symmetry code: (i) -1+x, ½-y, -½+z] connecting the N–H moiety of one 

molecule to the C2–O2 carbonyl of the neighbouring one (Figure 3).  This leads to a 
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supramolecular chain of molecules distributed in a typical zigzag fashion along the 

[25  0  116] direction which minimizes steric repulsion between the substituent groups. The 

strength of these hydrogen bonding interactions leads to a lengthening of the C=O bond 

distance to 1.2175(15) Å which is, as expected, markedly longer than those typically observed 

in related isatin molecule derivatives: from a systematic search in the Cambridge Structural 

Database (CSD, Version 5.30 with one update of November 2008), 16 hits were found with 

the C=O moieties registering bond distances ranging from 1.173 to 1.218 Å (median 

1.208 Å). It is also noteworthy that this supramolecular arrangement of molecules is markedly 

different from that typically observed for isatin where neighbouring molecules interact via 

R2
2(8) graph set motifs (involving the N–H and C=O moieties) [12] leading to discrete 

dimeric entities.  The crystal packing for both isatin and 4,5,6-trimethoxyisatin (Figure 4) is 

essentially mediated by a series of weak C–H···O hydrogen bonds and offset π-π stacking (not 

shown) involving in the former compound the supramolecular dimers and in the latter the 

aforementioned one-dimensional chain.  In addition, the rotation of the three methoxy 

substituent groups also seems to occur in such a way that maximizes the number of weak C–

H···O interactions.   

 

 

Figure 3 – One-dimensional supramolecular tape of 4,5,6-trimethoxyisatin molecules running 

parallel to the [25  0  116] direction of the unit cell and assembled by the N–H···O hydrogen 

bonds connecting adjacent molecular units. 
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Figure 4 – Crystal packing of 4,5,6-trimethoxyisatin viewed in perspective along the 

[100] direction of the unit cell. 

 
 

3.2. Variable temperature X-ray diffraction 

The X-ray diffraction pattern of a sample of 4,5,6-trimethoxyisatin was recorded as a function 

of temperature and the observed evolution with temperature is illustrated in Figure 5. The 

results provide further support for the existence of structural changes between 150 and 200ºC. 

 

Figure 5 – X-ray diffraction of 4,5,6-trimethoxyisatin as a function of temperature. 
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3.3. Hot stage microscopy studies 

During the first heating cycle of the dye crystals noteworthy changes took place in the visual 

aspect of the sample at temperatures of about 172 ºC and 215-216 ºC (Figure 6). This latter 

transformation occurred in the peripheral region of the newly-formed liquid phase and 

involved the appearance of small acicular crystals in the region surrounding the liquid phase. 

During cooling of the sample, crystallization of the liquid phase occurred and this process was 

accompanied by the formation of a crown of acicular crystals. When the sample was subjected 

to a second heating cycle the material previously recrystallized from the liquid phase melted 

again at 212 ºC, however the acicular crystals surrounding this region did not melt, even when 

heated up to 274 ºC. 

 

 

  

  
 

Figure 6- Photomicrographs of 4,5,6-trimethoxyisatin at several temperatures 

 

The crystallographic data show hydrogen bonding between adjacent molecules leading to the 

formation of a supramolecular chain. The thermal event beginning at 172 ºC may be caused 

by partial change or rearrangement of the crystalline network, possibly due to destruction of 

20ºC 170ºC 

215ºC Rec-150ºC 
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the π-π stacking. At higher temperatures the melting continues as the destruction of N–H···O 

hydrogen bonds proceed. 

In the 1H NMR (Nuclear Magnetic Resonance) spectrum, in DMSO solution, the high 

chemical shift of the NH signal (10.91 ppm), suggests that this proton is involved in a 

hydrogen bond. 

 

3.4. DSC and TGA studies 

The results obtained from DSC characterization may be correlated with those observed using 

hot-stage microscopy. The thermogram of this sample is dominated by an intense well-

defined narrow endothermic peak with an extrapolated onset at about 210 ºC (Figure 7, 2nd 

heating).  

 

Figure 7- DSC curve: second heating run  
 

TGA measurements confirmed that weight loss began between 190 and 205 ºC, supporting 

the suggestion that over this temperature range thermal degradation of the sample begins and 

progresses until close to 230 ºC (Figure 8).  

 

Figure 8- Thermogravimetry curve 
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The results of the thermogravimetric study suggest that the degradation of this sample occurs 

in two distinct phases, probably with rearrangement of the molecular structure and the loss of 

a small molecule (lost of CO [11]). The first heating experiment was stopped at about 210 ºC, 

at the onset of degradation. The sample was cooled to room temperature at 10 ºC min-1. At 

about 180 ºC a sharp exothermic crystallization peak, was observed. During the second 

heating a weak endothermic event was observed at 160 ºC. This may be associated with the 

phase change observed by hot-stage microscopy at about 170 ºC (Figure 6). 

A rather weak and disperse thermal event was also registered in the thermogram with an onset 

of 84 ºC, however attribution of this event to an identifiable thermal process has not been 

possible. There is no discernible weight loss associated with this exotherm and as it appears in 

both first and second heating curves it seems unlikely that it is caused by evolution of residual 

solvent from the sample. 

 

4. Conclusions 

In this study 4,5,6-trimethoxyisatin was characterized by structural and thermal techniques to 

determine the nature of the anomalous melting behaviour. The results of this study suggest 

that crystals of this substance undergo a phase transition with an onset at about 160-175 ºC. 

Thermal degradation of the sample occurs in a two-stage process at temperatures close to 200 

ºC. 

 

 

5. Supplementary material 

Crystallographic data (excluding structure factors) have been deposited with the Cambridge 

Crystallographic Data Centre as supplementary publication No. CCDC-695191.  Copies of 

the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge 

CB2 2EZ, U.K. FAX: (+44) 1223 336033. E-mail: deposit@ccdc.cam.ac.uk. 
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