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Abstract 

 

The development, in recent years, of novel biomaterials for tissue engineering (TE) and 

regenerative medicine, is an attempt to give an answer to the rising needs of the new tissue 

replacement/regeneration strategies. However, the increasing complexity of TE devices, 

comprising cells and/or bioactive agents within 3D scaffolding structures, implies additional 

concerns regarding adverse host reactions to the implantable constructs. Despite all the 

investment in the research on stem cells technology, as well as in the identification of key 

mediators in inflammation/immune reaction and differentiation pathways, the role of support 

biomaterials in the host reaction has been somewhat neglected.  

Natural-origin biomaterials have been considered for many years as a way to improve, in 

comparison to synthetic polymers, in vivo biofunctionality and to modulate/avoid a harmful host 

response due to its similarities with biological molecules. This PhD work attempted to gather 

deeper knowledge on the host reactions elicited by natural-origin biomaterials processed under 

different conditions and aimed at skin wound dressing and bone TE applications. 

In a first approach, chitosan/soy membranes were tested for their in vitro ability to activate human 

polymorphonuclear neutrophils (PMNs), assessed by the quantification of lysozyme activity and 

reactive oxygen species (ROS) production. Chitosan/soy membranes were not able to activate 

PMNs in vitro thus the analysis of the in vivo performance of those materials was pursued. The 

influence of chitosan and soy on the elicited inflammation was quantified after intraperitoneal 

implantation in rats. Soy isolate protein induced the recruitment of higher numbers of leukocytes 

and elicited a considerable reaction from the host in comparison to chitosan. Additionally, the 

chitosan/soy-membranes induced of a normal host response after subcutaneous implantation in 

rats while soybean membranes elicited a severe tissue reaction. In conclusion, an improved host 

response, considering inflammatory cells’ recruitment and overall inflammatory reaction, was 

observed when chitosan was combined with soybean. Considering a potential application of 

these chitosan/soy membranes as wound dressers, a rat partial-thickness skin wound model was 

used to assess the suitability of the membranes in promoting wound healing. A rapid but, most 

importantly, functional regeneration was achieved in the chitosan/soy membranes dressed 

wounds. The re-epithelisation, observed only one week after wounding, was followed by the 

cornification of the outermost epidermal layer indicating a functional recovery of the excised 

tissue. These new chitosan/soy membranes showed to possess the desired features in terms of 

healing stimulation, ease of handling and final aesthetic appearance to be considered useful as 

wound dressers.  
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Starch-based biomaterials have been extensively studied in vitro aiming at different TE 

applications. Previous in vitro studies with starch and polycaprolacatone (SPCL) scaffolds have 

proved the great potential of these structures. Thus, an in vivo systematic study was carried out 

using two different rat implantation models, subcutaneous (SC) and intramuscular (IM), and 

aiming at primarily understand the tissue reaction to two SPCL-based scaffolds produced by 

different methodologies, wet spinning (SPCL-WS) and fibre-bonding (SPCL-FB), both at short 

and long term implantation periods. SPCL-WS scaffolds seemed to induce a lower 

inflammatory/immune reaction in both types of implantation models even if when comparing the 

two models, the IM implantation resulted in a higher inflammatory response than the SC 

implantation, with early activation of the lymph nodes for both scaffolds. The overall data 

suggested a good integration of the polymeric structures in the host, independently of the 

implantation site, with a normal progression of the inflammatory reaction for all the conditions.  

Different biomaterials, cells, growth factors and stimulation conditions, as well as numerous 

combinations among them, have been widely proposed as potential routes to achieve the perfect 

bone TE construct. Despite this, in bone TE, vascularisation remains a rather big concern, not yet 

perfectly addressed. A valuable alternative to tackle the vascularisation of bone TE constructs 

relies on the incorporation in the construct of important mediators, such as vascular endothelial 

growth factor (VEGF) and fibroblast growth factor (FGF), which can be released in a controlled 

manner from the scaffolding material. To pursue this, SPCL-WS and SPCL-FB scaffolds were 

seeded with transfected human Adipose-derived Stem Cells (hASCs) and their movement was 

followed after implantation of the constructs into nude mice. Additionally, bone TE constructs 

were assembled using the SPCL scaffolds, fibrin sealant (Baxter®), hASCs, and growth factors 

(VEGF or FGF-2), and implanted in vascular endothelial growth factor receptor-2 (VEGFR2)-luc 

transgenic mice. The behaviour of transfected hASCs after transplantation was similar for both 

the SPCL-WS and the SPCL-FB scaffolds. Furthermore a mild inflammatory reaction was 

observed after transplantation of the assembled constructs and, as expected, the release of 

VEGF and FGF-2 from the constructs enhanced the expression of VEGFR-2 as well as specific 

molecular markers of neovascularisation. 

The overall data confirmed that the developed chitosan/soy membranes represent a valuable 

alternative for wound dressing applications and that starch-based constructs are promising 

approaches for bone TE applications. 
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Resumo 

 

O desenvolvimento de novos biomateriais para Engenharia de Tecidos (ET) e medicina 

regenerativa representa uma tentativa de responder à necessidade de novas estratégias para a 

regeneração e substituição de tecidos. No entanto, a crescente complexidade dos dispositivos de 

ET, que compreendem células e/ou agentes bioactivos no interior de estruturas de suporte 

tridimensionais, implica novas preocupações relativamente a reacções adversas desencadeadas 

pelo hopedeiro a esses mesmos dispositivos. Apesar de todo o investimento na investigação 

relacionada quer com as células estaminais, quer com a identificação de mediadores chave na 

reacção inflamatória e vias de diferenciação, o papel dos materiais de suporte na reacção imune 

do hospedeiro tem sido algo negligenciada. 

Os biomateriais de origem natural têm sido considerados, desde há alguns anos, como uma 

forma de melhorar, comparativamente aos polímeros sintéticos, aspectos da biofuncionalidade in 

vivo e de modular/evitar uma recção adversa do hospedeiro, devido às suas semelhanças com 

moléculas biológicas. Este trabalho de doutoramento foi desenvolvido de forma a adquirir um 

conhecimento mais profundo das reacções do hospedeiro, desencadeadas por biomateriais de 

origem natural, processados em diferentes condições, e produzidos para utilização em 

revestimento/protecção de lesões de pele, bem como em aplicações de ET ósseos. 

Numa primeira fase, foi testada a capacidade de membranas de quitosano/soja activarem 

neutrófilos (PMNs) humanos em cultura, através da quantificação da actividade da lisozima e da 

produção de espécies reactivas de oxigénio (ROS). As referidas membranas não foram capazes 

de activar os PMNs em cultura, procedendo-se, de seguida, à análise da performance daqueles 

materiais após implantação.  A influência do quitosano e da soja na inflamação provocada foi 

quantificada após implantação intraperitoneal em ratos. O isolado de proteína de soja induziu o 

recrutamento de um número mais alto de leucócitos e provocou uma reacção considerável do 

hospedeiro, em comparação com o quiotosano. Adicionalmente, as membranas de 

quitosano/soja induziram uma resposta normal do hospedeiro após implantação subcutânea em 

ratos, enquanto que as membranas de soja provocaram uma reacção tecidular severa. Em 

conclusão, foi observada uma melhoria na reacção do hospedeiro, do ponto de vista do 

recrutamento de células inflamatórias e reacção inflamatória geral, quando o quitosano foi 

combinado com a soja. Considerando uma potencial aplicação destas membranas de 

quitosano/soja como revestimento e protecção de lesões, foi utilizado um modelo de lesão de 

espessura parcial de pele em rato, para determinar a capacidade das membranas de auxiliarem 
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a regeneração das lesões. Uma regeneração mais rápida e, ainda mais relevante, funcional foi 

conseguida nas lesões revestidas com as membranas de quitosano/soja. A re-epitelização, 

observada apenas uma semana após a lesão, foi seguida pela cornificação da camada exterior 

da epiderme, indicando uma recuperação funcional do tecido excisado. Estas novas membranas 

de quitosano/soja mostraram possuir características adequadas em termos de estimulação da 

regeneração, facilidade de manipulação e aparência estética final, de forma a serem 

consideradas como boas opções para o revestimente e protecção de lesões cutâneas. 

Os biomateriais à base de amido têm sido extensivamente estudados in vitro tendo em vista 

diferentes aplicações de ET. Estudos in vitro anteriores utilizando suportes de amido e 

policaprolactona (SPCL) provaram já o grande potencial destas estruturas. Assim, foi elaborado 

um estudo in vivo sistemático, utilizando dois modelos de implantação em ratos, subcutâneo 

(SC) e intramuscular (IM), com o objectivo de compreender a reacção tecidular a dois suportes 

tridimensionais de SPCL, produzidos de duas formas distintas, wet spinning (SPCL-WS) e fibre 

bonding (SPCL-FB) em ambos períodos de implantação, curto e longo. Os suportes de SPCL-

WS induziram uma reacção inflamatória/imune menor nos dois tipos de modelo de implantação, 

mesmo tendo em conta que, comparando os dois modelos, o modelo IM revelou uma resposta 

inflamatória mais intensa do que o modelo SC, com uma activação inicial dos nódulos linfáticos 

para ambos os suportes. A totalidade dos dados sugeriu uma boa integração das estruturas 

poliméricas nos tecidos do hospedeiro, independentemente do local de implantação, com uma 

progressão normal da reacção inflamatória para todas as condições. 

Diferentes biomateriais, células, factores de crescimento e condições de estimulação, bem como 

várias combinações entre estes factores, têm sido largamente propostos como potenciais formas 

de atingir  o dispositivo de ET ósseos perfeito. No entanto, a vascularização permanece como 

uma grande preocupação na ET de osso e ainda não correctamente estudada. Uma possível 

alternativa para ultrapassar o problema da vascularização de dispositivos para ET ósseos 

consiste na incorporação no próprio dispositivo, de importantes mediadores, como o factor de 

crescimento endotelial vascular (VEGF)  e o factor de cresciemento fibroblástico (FGF). Estes 

factores podem ser libertados de uma forma controlada do material que compõe os dispositivos. 

Para avaliar, na prática, esta tecnologia, suportes de SPCL-WS e SPCL-FB foram semeados 

com células estaminais humanas do tecido adiposo (hASCs) transfectadas e o seu movimento 

foi seguido após implantação em ratinhos immunossuprimidos (nude). Além disso, os 

dispositivos para ET de osso foram produzidos utilizando suportes de SPCL, selante de fibrina 

(Baxter®), hASCs e factores de crescimento (VEGF ou FGF-2) e implantados em ratinhos 
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transgénicos VEGFR2-luc. O comportamento das hASCs  transfectadas foi similar para ambos 

os tipos de suportes, SPCL-WS e SPCL-FB. Mais ainda, foi observada uma ligeira reacção 

inflamatória após a transplantação dos suportes e, tal como o esperado, a libertação de VEGF e 

FGF-2 dos suportes induziu o aumento da expressão de VEGFR-2, bem como de marcadores 

moleculares específicos de neo-vascularização. 

No seu conjunto, estes resultados confirmaram que as membranas de quitosano/soja 

desenvolvidas representam uma valiosa alternativa para aplicação em revestimento e protecção 

de lesões cutâneas, e que a utilização de suportes baseados em amido é uma estratégia 

promissora para aplicações em ET ósseos. 
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Chapter I 

Animal models for host reactions and skin and bone tissue engineering approaches 

 

 

1.1 Abstract 

The study of host reactions in the field of implantable materials is a key issue. The type of 

material, its shape and final application, are important features to consider when choosing an 

appropriate animal model. Every day new biomaterials, as well as their based constructs for 

tissue engineering (TE) applications, are being developed and presented to the scientific 

community. Their properties are very wide including, among others, mechanical and 

physicochemical properties, surface chemistries and degradability. Eventually all of them will 

influence the host reaction and performance of the implant and reliable animal models have to be 

used in order to closely evaluate those properties. Due to the specific anatomical and 

physiological features of each tissue, significant information can be extrapolated to humans and 

to a particular clinical situation. Although in most cases there is no question on the reliability of 

the results obtained from animal experimentation, there are increasing discussions regarding the 

limitation of the number of animals used in research that might limit the achievement of some 

scientific developments. The rational of this review exercise is to highlight key issues in animal 

experimentation used to test implantable materials. An overview of the elicited host reactions 

after implantation of biomaterials is made. Special attention is given to the state of the art in 

animal models available for skin and bone tissue engineering. The most widely used animal 

models are discussed in order to gain further insight on the advantages and disadvantages in 

extrapolating the obtained results to human health care procedures. 

  



Chapter I: Introduction: Animal models for host reactions, skin and bone tissue engineering approaches 

 

2 
 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*This chapter is based on the following publication: 

 

T. C. Santos, A. P. Marques, R. L. Reis, Animal models for host reactions and skin and bone 

tissue engineering approaches, 2009. Submitted.  
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1.2 Host Reactions to Biomaterials Implantation 

The induced host tissue trauma and the inflammatory process resulting from the implantation of a 

medical device [1-4] are of outmost importance for its successful clinical application. To the host 

response towards the implant are usually attributed features of a chronic inflammation, while an 

early acute inflammatory response is mainly endorsed by the implantation procedure. 

Nevertheless, no matter what, the final purposes of inflammation are to destroy (or control) the 

invading agent, to initiate the repair process, and to re-establish tissue function as a continuous 

event [3, 5]. 

As a wound is created, coagulation takes place in the context of acute inflammation. 

Simultaneously, the complement system, which has the capability to distinguish “self” from “non-

self” [6, 7] is activated [3, 8, 9]. The interaction of plasma proteins such as immunoglobulins and 

fibrin [3, 4, 8, 9] with the surface of the material, or through an inadequate down-regulation of 

convertase, which enables Complement component 3b (C3b) binding to plasma proteins, such as 

albumin, immunoglobulin G (IgG) and fibrinogen [9] is the main responsible for this activation. In 

addition to that, the adsorbed proteins onto the surface of the implanted materials act as strong 

chemoatractants to polymorphonuclear neutrophils (PMNs) at a first stage and blood monocytes 

within 24 hours. Macrophages derived from blood monocytes continue the phagocytic work 

initiated by neutrophils [3, 10], although they might also act as antigen-presenting cells (APCs) 

after processing the material [4], instigating specific immunological responses  in which also 

participate lymphocytes [3]. In general, the formation of foreign-body giant cells (FBGCs) 

indicates the transition to a chronic inflammatory process [2, 11]. However, the same features 

may co-exist, attesting the simultaneous development of the acute and chronic inflammation [12]. 

As the FBGCs persist, unable to resolve the inflammation, cytokines and chemokines are 

released, inducing delayed-type hypersensitivity and forming a granuloma at the injury/implant 

site [13-15]. Granuloma formation is often a reason for implant rejection [16-20], or additionally 

induces latent auto-immune diseases [21]. Some authors defend [16, 22-24] that at the implant 

site, the foreign body induces chronic stress bringing forward the formation of granulomas. 

However, that is not always true and implants can be well tolerated and integrated in the host 

tissue without eliciting a persistent acute inflammation [25]. Conversely, when collagen synthesis 

is likely to surpass its degradation [26], excessive fibrotic tissue surrounds the implant impeding 

the interaction of the host with the implanted material [15, 26-28]. This diminished interaction may 

protect the host from eventual material debris, but more importantly, will not allow the integration 

of the implant into the host tissue. Therefore, thick fibrotic capsule formation is considered to be a 
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detrimental consequence of biomaterial implantation and a negative feature needed to be 

overcome in order to improve host reaction and eventually avoid rejection of the implant.  

Ideally, an implanted biomaterial would interact with and integrate the host tissue [29, 30], 

allowing the functional re-establishment and a complete recovery of the injured tissue. The 

resolution of inflammation with concomitant integration of the implant in the host tissue precedes 

the healing process. In a tissue engineered construct where the scaffolding material works as a 

temporary structure, the constant mutation of the implanted material will influence the reaction 

from the host.  Additionally, the release of the degradation products should not adversely interact 

with the host and should be physiologically discarded. Moreover, the presence of cells and 

bioactive agents influencing the properties of the biomaterial further hurdles the ideal scenario 

and raises further concerns still to be overcome.  

 

1.3 Skin Healing  

Skin is the largest and the heaviest organ of the body, constituting the main physical barrier to 

invading pathogens and foreign bodies [31]. For this reason rapid reconstitution of wounded skin 

is typically required. As a wound is created a complex set of systems interact in order to establish 

skin physical integrity, homeostasis and functionality [32, 33]. The reepithelialisation process 

begins few days after skin injury. It happens concomitantly to blood coagulation, inflammation, 

repair and new tissue formation [34, 35], as it is the precursor of tissue repair. As tissue is 

remodelling, blood supply becomes essential to feed newly formed tissue. It was shown that 

blood flow after skin excision is significantly high at the reepithelialisation stage and decreases, 

as the tissue remodels, to similar values observed in non-injured skin [36]. Thus, these 

intrinsically connected processes are fundamental for the enhancement of healing and functional 

tissue formation. Nonetheless, this cascade of events inevitably leads to scar formation in skin 

wounds. The type of the fibrous tissue in the scar, as well as the degree of scarring is dependent 

on the deposition of collagen and can be controlled, at some extent, by dressings that enhance 

healing by promoting the reepithelialisation and vascularisation of the wounded skin [37, 38].  

The lack of fibrin and platelet degranulation, the reduced inflammatory reaction and the raised 

levels of skin morphogenesis and growth molecules [39-42] observed in the embryos scar-free 

healing, may be the key for improving adult wound healing. Many useful models [43-49] have 

allowed the numerous studies on the features, players and mechanisms of wounding, 

inflammation and progression to wound healing and tissue regeneration. Epidermal growth factor 

receptor [47] was proved to be a key molecule in wound healing. Being able to regulate 

inflammation, wound contraction, cell migration and proliferation, and angiogenesis [47] might be 
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used as a promoter of skin regeneration. Other molecules present at the inflammatory milieu, 

such as reactive oxygen species, although directly delaying skin wound repair, are inherent 

detoxifying agents of the wounded area [46, 49]. The pro-healing effect of the non-protein amino 

acid gamma-aminobutyric acid (GABA) was also demonstrated by suppressed inflammation and 

stimulated reepithelialisation in excisional wounds in rats [48]. Hence, very different types of 

molecules involved in a variety of mechanisms and processes may be useful tools to provide a 

better understanding on the wound healing mechanisms. Additionally, those molecules represent 

promising tools to assist skin regeneration [37, 47, 50, 51] in the different strategies that have 

been proposed either for acute or chronic, as well as deep and superficial wounds healing.  

 

1.4 Bone Healing  

Bone tissue is a quite hard tissue with very particular mechanical properties. It is highly 

vascularised, with several anastomoses between inner medullary and outer periosteal vessels 

[52, 53], and mineralized [54, 55].  

The cellular component of bone, constituted by osteocytes, osteoblasts and osteoclasts, is 

responsible for specific functions, such as filling up the bone matrix, synthesise the organic 

components of the matrix, and resorption and remodelling, respectively [53, 54]. The balance 

existing between osteoblasts and osteoclasts is the main responsible for the stability of bones 

[53, 56]. Hence, to reconstruct bone healing process after fractures or implantation procedures 

represents a challenge, not only because remodelling mechanisms in either situations are 

different [57], but also because new bone deposition in bone tissue defects showed to be different 

in different species [57, 58].  

Contrarily to highly vascularised tissues, such as muscle, bone is able to heal and remodel 

without scarring [59]. It heals by different mechanisms with the same functional end. 

Endochondral bone repair occurs when bone is subjected to some mobility and also is the 

mechanism that allows bone growth. It is the only mechanism where a preliminary cartilage 

phase (callus formation), synthesised by the inner periosteal layer and marrow tissue, followed by 

woven and then lamellar bone formation. Primary and direct bone repair do not comprehend a 

cartilage phase and require a rigid stability of the gaps between edges, as in the case of fractures 

or osteotomies. The first is mediated by the intraosseous Haversian system osteoblasts and 

osteoclasts occurring in a non intrafragmentary space, and the direct bone repair has the 

participation of marrow derived vessels and mesenchymal cells [56]. By its turns, in distraction 

osteogenesis, woven and then lamellar bone is synthesised as the gap slowly expands, also 

without primary cartilage formation, as in bone elongation clinical situations [60]. 
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Independently of the repair mechanisms, cells from the inner osteogenic layer of the periosteum 

[59], circulating osteoprogenitor cells [61], endosteum cells [59], and undifferentiated 

mesenchymal cells from either the bone marrow [62] or from soft tissues are key players in bone 

repair [54, 55, 59, 61-63].  

Within the repairing niche, each intervenient cell type produce growth factors and proteins that 

determine the progression of bone healing. Bone morphogenic proteins (BMPs), such as BMP-2 

[58, 64], BMP-3 [65], BMP-7 [66] and BMP-13 [67]  have been show to induce osteogenic 

differentiation [68].  With the similar objective of bone regeneration, transforming growth factor 

beta (TGF-β1) [69, 70], insulin growth factors 1 and 2 (IGF-I and IGF-II) [71], basic fibroblast 

growth factor (bFGF) [72, 73] and platelet derived growth factor (PDGF) [74, 75] have been used 

with very rewarding results. Additionally, platelet-rich plasma demonstrated to be an excellent 

autologous source of a cocktail of key growth factors to induce bone regeneration [76, 77].  

The relevance of some of those growth factors over bone regeneration has been highlighted in 

different bone tissue engineering (TE) approaches [71, 73, 74]. However, issues such as the 

need of very high concentration and difficulties in their controlled release from incorporating TE 

constructs are still to be addressed.  

 

 

1.5 Animal models for Biomaterials Evaluation 

Animal models have been extensively developed in the last few decades in the biomedical field. 

Despite major advances regarding in vitro models aiming to mimic the complexity and the cellular 

interaction existing within tissues, in vivo testing is essential to safely conclude about the 

biological performance of newly developed devices when implanted in a living system. A better 

characterization of such response, at the cellular and molecular level, is demanded and is being 

extensively investigated in the last decades [14, 78-80]. However, the complexity of the in vivo 

responses to implanted biomaterials renders this assessment as a challenging issue to be 

addressed. For this reason the establishment and the choice of a specific animal model must not 

only consistently answer to the posed hypothesis but also to mimic, as much as possible, the 

clinical situation that permits a correct extrapolation to humans. 

 

1.5.1 - Host reaction models 

Subcutaneous [81, 82], intraperitoneal [81, 83] and intramuscular [84, 85] mice [86, 87] and rat 

[81, 85] models are the most commonly used animal models to assess, at an early stage, the in 

vivo performance of newly developed biomaterials. Despite the well known influence of the 
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processing methodologies over materials surface properties and degradation behaviour, usually 

these implantation models do not deal with the final shape of the device. Nevertheless valuable 

considerations can be obtained with these models regarding acute [30, 81, 88, 89] or chronic 

inflammation [30, 81, 89, 90], as well as long term reactions with fully integration of the implant 

into the host tissue [29, 30]. Additionally, comparative works using different models allow for the 

local [30, 81, 91], or systemic [81, 91, 92] analysis of the implant effect over the host. While the 

subcutaneous and the intramuscular models are mainly related to the direct effect of the device 

over the implantation site, the intraperitoneal models have been useful in evaluating the reaction 

of abdominal organs, such as spleen [81, 91, 92], liver [81, 91], kidney [81],  mesenteric lymph 

nodes [92] as well as the adjacent adipose tissue [92]. Moreover, the antigenic potential of a 

material and consequent acquired immunity by the host has also been studied after repeated 

implantations either in subcutaneous [93] and intraperitoneal [94] rat models. 

Classically, researchers in the biomedical field tend to consider the implant/host interface as a 

key issue in evaluating tissue reactions to implants. In fact, great efforts have been made to 

develop materials whose surfaces are less immunogenic [94-98]. The reduced number and the 

lack of validation of in vitro models to assess the immunogenic potential of newly developed 

materials still renders in vivo tests as more reliable for testing the success of those 

imunomodulatory approaches. The effect of key molecules such as dexamethasone [99], nitric 

oxide [100], tumour necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) [101], vascular 

endothelial growth factor (VEGF) and fibroblast growth factor-beta (FGF-β) [102] has been tested 

in both subcutaneous rat [99, 100] and mouse [101] models, as well as in the intramuscular rat 

model [102]. Parameters such as inflammatory tissue reaction, foreign body reaction (FBR), 

phagocytic potential of macrophages and giant cells formation, fibrotic capsule thickness and 

vascularisation were targeted. However, due to given differences on the test model and 

consequent reaction mechanisms [101, 102], or on the carrier materials, and thus the surface 

properties [99-102], few remarks regarding the potential of the tested molecules in modulating 

host response can be extracted. Given the interest to avoid immunessupression, it is imperative 

to proceed with this line of research, which envisages materials that elicit moderate host 

response or controlled inflammatory/immune reactions. Moreover, comparative studies of specific 

biomolecule/carrier systems in different animal models are demanded for concluding about the 

potential of those strategies. 

Macrophages, always a major player in the host reaction, recognize and react with the proteins 

adsorbed to the materials surface [103]. Although some lights have been thrown regarding this 

interaction [80, 104-106], the mechanisms by which macrophages adhere and react to the 
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different surfaces are still far from being revealed. However, some indications on the mechanisms 

of monocyte recruitment and sub-population differentiation in response to biomaterials 

implantations have been achieved [107]. A subcutaneous cage implant rat model [80] allowed to 

show that specific fibronectin peptide sequences such as Pro-His-Ser-Arg-Asn (PHSRN) and Arg-

Gly-Asp (RGD) elicited an early stage FBGC reaction. These domains were identified as being 

important factors mediating macrophage adhesion to biomaterials surfaces in the FBGC 

formation [80]. This assumptions were further explored in a transgenic mice model where plasma 

fibronectin [p(FN)] was depleted [105]. Besides being an important regulator of FBGC reaction, 

Keselowsky and co-workers [105] demonstrated that p(FN) plays a role in the fibrotic capsule 

formation [105]. Additionally, two other transgenic mice models, where either fibrinogen or 

plasminogen was depleted, were used to evaluate the role of these proteins in the recruitment 

and adhesion of leukocytes to the intraperitoneal implanted biomaterials [108]. This work proved 

that leukocyte recruitment to the intraperitoneal environment is plasminogen-dependent, while 

leukocyte adhesion is fibrinogen-dependent [108].  

Ultimately the specific cellular response to the materials surface determines the deposition of 

collagen by the tissue repairing cells and consequently the nature and the extent of the fibrotic 

capsule around the implant [105, 109-111] . Due to the muscle high degree of vascularisation that 

assist complement and clot systems’ activation, intramuscular models can be considered more 

reliable for providing information on the fibrotic capsule formation and development throughout 

the implantation [84, 85].  

The postulation that the implant/host interface is considered of major importance must not 

diminish the importance of cell recruitment mechanisms and its relevance in the onset of 

inflammation, tissue regeneration and implant integration. Intraperitoneal models are the most 

suitable to evaluate cell recruitment and activation status [92], at short [92, 98, 108, 112] and long 

time periods [92, 94] of reaction. Besides injection of particles suspensions [91, 92], those models 

also permit materials implantation [94, 98, 108, 112], allowing to establish a parallel between the 

implant/host interface analysis and the surrounding cellular milieu. The cytokine profile resulting 

from the materials implantation is an example of an extremely powerful measure of this crosstalk. 

In fact, the cytokines in the exudate samples are released by recruited cells that received the 

information from mediators, by its turn, secreted by surface adherent cells [112-115]. Additionally, 

direct cell response to the implant surface may elicit the release of several reactive species which 

induce either cell death or concomitant secretion of mediators, such as new reactive species 

[112]. Variations of the classical subcutaneous implantations, such as subcutaneous air pouches 

[82, 116, 117], dorsal skin fold chamber [118], or cage implants [80, 97, 113, 119-121], have also 
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demonstrated reliable results regarding the interplay between direct and indirect material surface 

reactions. Cage implant models were shown [97, 119-121] to be useful to identify recruited and 

adherent cell types  as well as macrophage fusion into FBGCs [80] and cytokine release [113] in 

response to implanted materials, either in rats [80, 97, 119, 120] or mice [113]. Additionally, with 

air pouch rat models it has been possible to accurately evaluate the oxidative stress experienced 

by leukocytes in the presence of implants [82, 116]. Moreover, the observation of leukocyte 

recruitment and accumulation was possible in a dorsal skin fold chamber [118], using an intra-

vital fluorescence and avoiding the sacrifice of animals at different experimental time periods. 

Despite the achievements using subcutaneous, intramuscular and intraperitoneal implantations, 

together with their particular variations, in the evaluation of host inflammatory/immune reactions 

to biomaterials, a major lack is still present. The understanding of the mechanisms involved on 

the transition from an acute to a chronic reaction, to which the existing animal models are not 

capable to answer, is a significant depletion of field.    

 

Table 1.1: Overview of the animal models used to evaluate the host reaction to biomaterials 

Animal Model Aims Assessed parameters References 

Mouse 

SC 

Host reactions 

evaluation 

Material/tissue interactions 

Foreign body reaction 

Fibrosis 

29, 86, 87, 88, 91, 

105* 

IP 

Systemic reaction 

Inflammatory cells recruitment 

Fibrosis 

108**, 92, 87, 91, 

98 

Cage implant Inflammatory cells recruitment 113 

SC air pouch Inflammatory cells recruitment 117 

Rat 

SC 

Material/tissue interactions 

Foreign body reaction 

Fibrosis 

12, 30, 81, 89, 90, 

93, 97, 100, 101, 

107, 111, 115 

IP 

Systemic reaction 

Inflammatory cells recruitment 

Fibrosis 

81, 83, 94 

IM 

Material/tissue interactions 

Foreign body reaction 

Fibrosis 

30, 84, 85, 102 

Cage implant 
Inflammatory cells recruitment 

80, 114, 119, 120 

SC air pouch 82, 116 

* Knockout mouse (KO); ** Transgenic mice. 
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1.5.2 – Models for Skin Regeneration  

Although trauma and surgical procedures are the main causes for acute skin lesions, their healing 

mechanisms are not necessarily similar. Incisional wounds heal by primary intention, following the 

events described in section 2 [122]. This means that tissue loss is not extensive, inflammatory 

response is not exuberant and wound contraction is not a concerning issue. In contrast, skin 

excisions involve a higher tissue removal and thus a secondary intention healing process [123]. 

Inflammation as well as granulation tissue formation is abundant, resulting in a significant level of 

wound contraction.  

Incisional full thickness wound rat [124-126] and mouse models [47, 127] have been used to 

evaluate the effect of biomaterials per se, or of locally releasing growth factors over healing rates, 

considering skin breaking strength [128] and bleeding cessation [129] in rat and mice, 

respectively. By its turn, excisional skin wound models are the most appropriate and the ones that 

have shown some usefulness [130] when testing biomaterials or tissue engineering constructs 

aiming to directly participate in the regeneration of the wounded skin. The depth of the wound and 

consequently the lesion of the skin epidermal or, if deeper, also the dermal component, are 

characteristic of respectively a partial or a full-thickness excisional acute wound model.  

In partial-thickness skin excisions, the pannicullus carnosus, the muscle beneath epidermis, is left 

intact and for that reason, this type of injuries heal from the wound bottom to the top. Due to the 

muscle contractile nature, wound contraction is a major concern in these models. By its turn, full-

thickness models imply the ablation of the pannicullus carnosus and the healing progresses from 

the uninjured margins of the wound. Thus, the regeneration of full-thickness wounds, contrarily to 

what is claimed in some works [131-135], is not efficiently supported only with dressing materials. 

These have proved to be capable of regenerate partial-thickness wound in different models [134, 

136]. However, and in addition to the contraction observed with small animals, the adherence of 

the dressers [136] and the presence of dressing debris [134, 136] might compromise the aimed 

reepithelialisation by influencing the normal progress of the inflammatory/healing process. Full-

thickness wound models are, contrarily to the partial-thickness, mandatory to demonstrate the 

direct role of materials [37, 124, 125, 127, 133, 134, 137, 138] and/or cells [139-141] over the 

healing mechanisms, which ultimately rely on the uninjured tissue at the margins of the wound. 

When acute inflammatory reaction persists at the wound site, a chronic skin wound [130] with 

delayed healing [142, 143] develops. A major problem of chronic wounds with associated 

impaired healing relies on its different etiologies, such as diabetes, immunessupression, 

deficiencies in blood supply or nourishing, glucocorticoids administration and age [130, 142], 

which do not represent a localized deficiency. Frequently, the established models mimic delayed 
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wound healing and not the impaired wound healing observed in the clinical condition of chronic 

wounds. Therefore these models have been mainly used in order to try to understand the 

mechanisms underlying impaired healing in mice [144]  and rats [145, 146], as the case of 

diabetes, instead of working as proper chronic wound models for testing skin regeneration 

systems. Particular characteristics of chronic wounds such as deficient vascularisation can be 

though mimicked with the porcine split-thickness skin wound model. Even not being a specific 

model of chronic wound formation, its impaired vascularisation allows to test the potential of 

modified polymeric structures such as collagen over dermal regeneration and vascularisation 

[138].  

Additionally, rabbit [147] and murine [148] models of decubitus ulcers have been gaining an 

increased interest [149], especially on gathering further knowledge on the mechanisms of 

pressure ulcer development and on the assessment of healing mechanisms. Wound contraction 

and the fast healing rate observed in small animals, such as rodent compel researchers to adjust 

the rodent models or to substitute small animals by larger animals with skin characteristics closer 

to humans [150, 151]. The adjustment of the skin healing rate to values comparable to humans 

may include the administration of steroids to impair the animal wound healing [152]. An 

alternative approach to try to eliminate or minimise this factor would be to perform comparative 

studies using different excisional models [153]. In the guinea pig skin excision model, for 

example, wound contraction is almost absent and a parallel assessment with the classical mouse 

excisional model would allow the extrapolation of the results for humans. Nevertheless, Cahn and 

Kyriakides [153] considered that the residual degree of contraction observed in the guinea pig 

skin excision model significantly influenced the results and that extrapolation is not possible. 

A major obstacle for proposing new strategies for improving skin regeneration is the dissimilarity 

between the human and other species skin [130]. The structural and functional differences are 

sufficient to quarrel about the relevance of the results obtained with some animal models for skin 

regeneration. Nonetheless, the resemblances between porcine and human skin, sustain the 

reliability of porcine models not only for testing skin tissue engineered constructs [138, 154, 155] 

but also to study therapeutic agents such as growth factors and topical antimicrobials aimed to 

human use [156].  
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Table 1.2: Overview of the animal models used to test materials for skin regeneration  

Animal Model Aims Assessed parameters References 

Mouse 

Incisional 

Wound 

dressing 

Skin healing 

Scarring 

Inflammation 
47, 127, 129 

Excisional 
Full-

thickness 

Reepithelialisation 

Inflammatory infiltrate 

Scarring 

139 

Rat 

Incisional 
Scarring 

Inflammation 
124-126, 128 

Excisional 

Partial-

thickness 

Reepithelialisation 

Inflammatory infiltrate 

Scarring 

Wound contraction 

135 

Full-

thickness 
37, 137 

Pig Excisional 

Partial-

thickness 

Wound 

dressing 

Skin healing 

 

Reepithelialisation 

Inflammatory infiltrate 

Scarring 

Wound contraction 

131, 134, 136 

Full-

thickness 
138, 150, 151 

Mouse 

Decubitus ulcers 

Skin healing 

and 

regeneration 

Reepithelialisation 

Inflammatory infiltrate 

Scarring 

Wound contraction 

148 

Rabbit 147 

 

 

1.5.3 - Models for Bone Tissue Engineering 

The continuous developments in the tissue engineering field [157] have also guided the progress 

of the approaches that have been proposed for bone regeneration [158, 159]. However, the 

translation from bench to bedside is always a challenge and a delicate issue. In the particular 

case of bone tissue, its complexity both at the metabolic and functional levels, have somehow 

compromised further advances [160].  

The establishment of valuable animal models capable to mimic, as much as possible, the clinical 

scenarios of bone lesions is of outmost interest [57, 161]. The metabolic differences observed 

between human and rodents are the main reason for some authors [57, 162, 163] to consider that 

rodents as not suitable models to assess bone formation/regeneration [163]. Nevertheless, rats 

[164, 165] and mice [64, 166, 167] are vastly used models for ectopic bone formation [166, 167] 

or orthotopic regeneration [164] and biomaterials integration evaluation. Additionally, despite all 

the controversy and the observed differences in bone macro and microstructure, composition and 

remodeling [163], Colnot and co-workers [167] showed that mice bones heal similarly to rats, 

rabbits, dogs, sheep, monkeys and humans, this is with intramembranous bone formation and 

without the transitional cartilage formation [167]. Orthotopic rabbit models [58, 77, 168] might be 

used as alternative models to rodents which not only facilitates the surgical handling but also 
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approximates the tissue features to humans and consequently a more reliable extrapolation of the 

results to a clinical scenario. 

New bone formation is impaired in significant bone loss situations. Therefore, for the assessment 

of the outcome of a proposed bone tissue engineering approach it is imperative to use critical size 

bone defect models [160, 161]. Small-animal models have been extensively used to evaluate 

bone healing and new bone formation [58, 77, 165-167, 169], new bone colonization [164], and 

implant integration in critical size defects not only in long [64, 168] but also in flat [164, 170] 

bones. 

Bone formation is highly dependent on the applied load [54, 55] and on particular bone healing 

mechanisms [63]. For this reason, long bones of large animals, in the opinion of many authors 

[61, 62, 66], are the most adequate to establish bone critical size defect models. However, flat 

bones critical size defects [58, 170-172], in particular calvaria defects, have been also extensively 

used. The ease handling, availability and cost effectiveness, especially provided by rodents 

comparatively to larger animals such as sheep or pig, render these models as suitable 

alternatives to long bones critical size defects. 

Sheep tibia critical size defect models [61, 62, 66, 76, 173-175]  have been widely used in order 

to assess the osteogenic potential of scaffolding materials for bone tissue engineering 

applications [62, 76, 173-175]. The role of key growth factors on bone tissue regenerations has 

been addressed in critical size defects of long bones in large animals [73]. Moreover, cell 

therapies based on the transplantation of mesenchymal stem cells aimed at bone regeneration 

were also studied using these models [62, 175-177]. A goat iliac crest critical size defect model 

was created to understand the healing rate of bone grafts donor sites since autografts are still the 

most used strategy for bone regeneration [178]. The consistency of the results obtained with 

these and other works [176, 177, 179] justify in a great extent that long bone segmental defects 

animal models are the pre-clinical gold standard models for bone regeneration [161].  

Bone biomechanics also determine the need for maxillofacial bone regeneration models to 

evaluate the different approaches proposed for the regeneration of those defects. Different 

models have been providing insights and deeper knowledge on useful strategies for maxillofacial 

reconstruction. A mini-pig mandibular critical size defect model was used to assess the capacity 

of autologous tooth deciduous stem cells to sustain new bone formation and regenerate the 

created defect [180]. Major achievements have also been reached after testing the effect of BMP-

7 [181, 182] or human recombinant osteogenic protein-1 (rhOP-1) [183] release in vivo in a 

critical size mandibular sheep defect model. Moreover, and despite all the ethical controversy, a 
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baboon maxillary critical size defect was used [184] to compare the performance of a 

demineralised freeze-dried bone allograft and tendonous collagen as bone fillers.  

Although mandibular bone belongs to the long bones set, the load-bearing to which it is subjected 

is very much different from the limb long bones. This justifies the widespread use of mandibular 

defects in big animals, including baboons, whose maxillofacial bones are anatomically very 

similar to humans. 

Recently a new spinal fusion model was established in both rabbits [169] and rats [165] to assess 

the osteoconductive behaviour of collagen combined with osteogenic protein-1 (OP-1) [169] and 

the effect of recombinant bone morphogenic protein-2 [165] over bone healing. These models are 

giving insights to an emergent clinical situation in which surgeons are obliged to fuse vertebras 

[185] to correct instability due to infections or tumours resection, spinal deformities, fractures, 

hernias or to alleviate pain. 

Bone healing and regeneration is highly reliant on its biomechanical stimulation and on the load-

bearing situation of the affected bone [54, 55]. For these reasons, and despite the numerous 

works [64, 166, 167] testing new bone formation in ectopic models, it is of outmost importance to 

corroborate the obtained information in orthotopic models in which the micro-environment actually 

simulates the clinical sets.  

Besides the mandatory development of reliable, reproducible and standardized segmental bone 

defect models in large animals [161] the rational in the choice of the animal model has to be 

always in accordance to the target clinical setting. 
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Table 1.3: Overview of the animal models used to test materials for bone tissue regeneration  

Animal Model Aims Assessed parameters References 

Rat 

Ectopic 

SC 
New bone 

formation 

Mineralization of the 

surrounding tissue 

67 

IM 67, 166 

Orthotopic 

Flat bone 

Bone 

regeneration 

Mineralization of bone/material 

interface 

Callus formation 

74, 171, 172 

Long bone 65, 164 

Spinal 

fusion 
165 

Mandible 

bone 

166 

Sheep Orthotopic 

181, 182, 183 

Long bone 
61, 62, 66, 76, 173, 

174, 175 

Rabbit 

Orthotopic 

Flat bone 

Mineralization of bone/material 

interface 

Callus formation 

58, 70 

Spinal 

fusion 
169 

Long bone 

69, 75, 164 

Babbon 

73, 168 

Mandible 

bone 
184 

Guinea 

pig 
Flat bone 

170 

Goat 

178 

Long bone 

176, 177 

Pig 

179 

Mandible 180 

 

 

1.6 Final Remarks 

The shape and size of the biomaterial to be tested, as well as its final application, are important 

features to have into consideration when choosing an animal model. The final intended use and 

function of the implanted biomaterial is also related with degradability issues. In some cases is 
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not the biomaterial itself that induces a specific reaction, but rather the degradation products 

resulting from the concomitant action of the cells in the device. Host reaction models are very 

useful to evaluate those issues. However, when considering tissue engineering applications the 

information obtained with these models has a relative relevance. In fact, the incorporation of other 

elements such as cells and/or growth factors into a scaffolding material completely changes the  

microenvironment and therefore the obtained response. For this reason and due to the specific 

anatomical and physiological features of each tissue, significant information that can be 

extrapolated to humans and to a particular clinical situation has to be obtained with animal 

models that closely mimic those properties. The confidence in the obtained data also results from 

a statistically representative approach, not only in the number of samples, but also in the number 

of tested animals. This is however contrary to the increased discussion regarding the limitation of 

the number of animals used in research. Alternative models making use of bioluminescence and 

transgenic animals represent a valuable combination that permits an analysis along the time 

avoiding the sacrifice of the animals at the intermediate time points. However, the currently 

available models are still far from ideal and the pursued accuracy with in vivo tests rely on 

choosing a model which allows the most precise answers to the experimental questions, as well 

as a correct extrapolation to human clinics. 
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Chapter II  

Materials and Methods 

 

 

2.1 Experimental approach and research rationalization  

The research work presented in this thesis was developed with the purpose of gaining further 

understanding on the host reaction to the implantation of natural-based biomaterials aimed for 

skin wound healing and bone regeneration, making use of different animal models. The specific 

aims included: 

- Investigate the effect of chitosan-based membranes over the activation of human 

inflammatory cells. 

- Understand the influence of chitosan in the host reaction elicited by soy-based 

biomaterials. 

- Assess the suitability of newly developed chitosan/soy-based membranes as wound 

dressing material. 

- Compare the inflammatory response induced by the implantation of starch-based 

scaffolds in two rat implantation models, subcutaneous and intramuscular. 

- Evaluate the host reaction elicited by different starch-based tissue engineering 

constructs aimed for bone tissue engineering. 

 

The work was divided in two major sections having in consideration the experimental 

approach/methodology. The first section studied the in vitro response of human specific 

inflammatory cells in direct contact with different types of chitosan-based membranes (Chapter 

III). The second part of the research work intended to address key issues regarding in vivo 

inflammatory host reaction and material’s performance when implanted in different animal 

models, specifically: i) elicited inflammation provoked by chitosan- and soy-based materials 

(Chapter IV); ii) evaluation of the suitability of chitosan/soy-based membranes as wound dressing 

materials (Chapter V); iii) assessment of different host reaction to starch-based materials, 

depending on the site of implantation (Chapter VI); and iv) inflammatory reaction induced by 

starch-based Tissue Engineering (TE) constructs (Chapter VII). 
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2.2 Materials  

2.2.1 Reagents 

Reagent grade chitosan (Cht) with a deacetylation degree of 85% was obtained from Sigma, 

USA, Soy protein isolate from Loders Crocklaan BV, The Netherlands, and tetraethyl orthosilicate 

(TEOS) from Aldrich, USA. 

 

2.2.2 - Soybean protein isolate (SI-P) and chitosan (Cht-P) powders 

Soybean protein biomaterials have demonstrated quite interesting properties for bone 

regeneration purposes [1-5], nonetheless few studies [6-8] have in fact investigated its suitability 

within the field. It was demonstrated [9] that soybean-based biomaterials promote osteoblast-like 

cells’ differentiation in vitro without inducing activation of human macrophages [9]. However, 

additional studies are required to further elucidate the potential of these materials in the 

biomedical field. 

In contrast to soybean protein, chitosan has been extensively proposed in the biomedical arena 

for bone-[10-14], cartilage-[11, 15, 16] and skin-related [11, 17, 18] applications. The promotion of 

osteoblast proliferation and activity characterized by an up-regulated expression of bone-related 

proteins and mineral rich matrix deposition, directed by chitosan-based structures, has been well 

demonstrated [13, 14]. Concerning cartilage-related applications, the structural similarity of 

chitosan with various glycosaminoglycans (GAGs) found in articular cartilage has burst the 

investigations. Besides playing a role in modulating chondrocyte morphology, differentiation and 

function [16], chitosan was shown to act on the growth of epiphyseal cartilage and wound healing 

of articular cartilage [15]. The successful role of chitosan in the skin wound healing mechanisms 

has been successively confirmed [17-19]. Although it was observed that chitosan does not 

directly accelerate extracellular matrix (ECM) production by fibroblast-like cells [20], it was proven 

that chitosan-based materials have the capacity to promote the production of growth factors, such 

as transforming growth factors (TGF)-β1 and platelet-derived growth factor (PDGF) by 

macrophages [19] which, in turn, induce and/or enhance ECM production [18, 19]. Moreover, 

these materials accelerate the infiltration of polymorphonuclear neutrophils (PMNs) at the early 

stage of wound healing that is followed by the production of collagen by fibroblasts [17]. 

Despite all the promising results in the use of chitosan for the biomedical field, studies from 

different groups [19, 21, 22] have shown controversial results after implanting chitosan-based 

materials. An adverse inflammatory response showing extensive macrophage activation after 
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subcutaneous implantation of, either lyophilized chitosan [19] or collagen-chitosan-hydroxyapatite 

hydrogels in rats [21] was detected. Conversely, other authors showed that chitosan hydrogels 

induce mild acute and chronic inflammatory responses, identical to the typical wound healing 

cascade, after subcutaneous [23] and intraperitoneal implantations in rats [22].  

Nevertheless the significance of chitosan within the biomedical field is unquestionable since the 

observed differences on the response of cells and tissues to the different chitosan-based 

materials may be attributed or influenced by the source of the raw material or by the shape of the 

biomaterial. Chitosan has also been one of the most used materials to improve the biological 

performance of other materials such as metals [24-27] and other biodegradable polymers [7, 14, 

28]. Recent studies demonstrated that neonatal rat calvaria osteoblasts proliferate at higher rates 

on titanium surfaces coated with chitosan [24], which also promote better adhesion of osteoblast-

like cells [25]. In the same way, the hydrophobic surface of poly(L-lactide) (PLLA) matrices coated 

with chitosan displayed a different wetability and enhanced cell affinity [26]. In a rabbit tibia defect 

model [27] it was showed that the coating of titanium pins with chitosan induced minimal 

inflammatory response and a typical healing sequence of fibrous woven bone formation followed 

by the development of lamellar bone. This is indicative for the role of the chitosan-coatings in the 

osseointegration of orthopaedic implants [27]. When blended with synthetic polymers, such as 

polycaprolactone [14] or poly(butylene succinate) [28], chitosan have shown to exert a synergistic 

effect of on the blend. While the synthetic polyester promoted the adhesion of osteoblast-like 

cells, the presence of chitosan significantly enhanced their osteoblastic activity [14, 28]. Chitosan-

soy based membranes have also demonstrated improved in vitro biological performance in 

comparison to unblended soy-based materials [7]. Additionally, in vitro analysis of the potential of 

chitosan/soy-based membranes to stimulate immune system cells showed that they did not elicit 

the activation of human polymorphonuclear neutrophils freshly isolated from circulating blood 

[29]. Despite the in vitro promising results, in vivo validation of the improved biological behaviour 

of the soy-based materials after blended with chitosan is needed, since the organism includes a 

very complex immune system.  

Soybean protein isolate and chitosan powders were used as received. 

 

2.2.3 - Preparation of the Chitosan/Soy (Cht/Soy)-based and Soybean Isolate (SI) membranes 

Chitosan-soy based membranes have also demonstrated improved in vitro biological 

performance in comparison to unblended soy-based materials [7]. These new systems combine 
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the blending of natural polymers, such as chitosan and soy [7, 30], in order to develop hybrid 

materials for tissue engineering and regenerative medicine. 

Chitosan (Cht) and chitosan/soy protein (Cht/Soy) blended membranes were prepared by means 

of solvent casting, as previously reported [7]. By its turn, the chitosan-soy protein hybrid 

membranes (Cht/Soy-TEOS) were produced by means of a combination of a sol-gel method and 

solvent casting [31]. Firstly, a 4 wt% chitosan solution was prepared by dissolving chitosan in 0.2 

M acetic acid solution. Secondly, a 1 wt% soy suspension (water/glycerol (10 % w/v)) was also 

prepared and the pH adjusted to 8.0 ± 0.3 with 1 M sodium hydroxide solution. Then, the 

dispersion was heated in a water bath at 50ºC for 30 min. The blend was prepared by means of 

mixing the solutions (75/25 wt% chitosan-soy protein) under constant agitation for the period of 1 

hour. Finally, the cross-linking agent TEOS and 0.5 M chloridric acid (HCl) solution in the molar 

ratio (TEOS:HCl) of 1:0.1 wt% were added to the blend, under constant stirring for 24 hours. 

Finally, the sol-gel was poured into a Petri dish and allowed to dry at room temperature for 

several days, followed by neutralisation using a 0.1 M sodium hydroxide solution, as described 

elsewhere [31].  

The Soybean Isolate (SI) membranes were prepared by solvent casting, according to a previously 

reported procedure [30]. Briefly, SI was suspended in distilled water (10%w/v) at room 

temperature under gentle stirring in order to avoid protein denaturation and consequently, foam 

formation. Glycerol was added to this suspension (1g per 5g of SI), which was then poured into 

moulds, directly in the drying place. The moulds were not moved until complete drying in order to 

assure that the insoluble part of SI was uniformly distributed. Drying was performed at room 

temperature and relative humidity. Alternatively, denaturated SI (dSI) membranes were prepared 

by heating the referred SI suspensions at 100ºC during 2h. After denaturation, the obtained 

viscous solution was casted as described above. 

 

2.2.4 - Preparation of the Starch-based (SPCL) scaffolds 

Natural-origin biomaterials have been considered for many years as a way to improve, in 

comparison to synthetic polymers, in vivo biofunctionality and to modulate/avoid a harmful host 

response due to its similarities with biological molecules. Starch-based scaffolds, processed 

using several methodologies aiming at different TE applications [32-39], have been 

demonstrating a great potential in the field. Very promising results for bone tissue regeneration 

have been particularly obtained with a blend of starch and poly-caprolactone (SPCL) [33-36, 38, 

40-43]. SPCL scaffolds, with adequate physicochemical and mechanical properties for bone TE 

[32, 35] and adequate degradability rate [37, 38, 44], have shown support mesenchymal stem 
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cells growth and differentiation [32, 33] and to be excellent supporting structures for endothelial 

cells [35, 36, 45, 46]. Consequently, a lacuna is still present concerning the in vivo reaction to 

SPCL-based scaffolds.  

Starch-based scaffolds were produced from a blend of Starch with ε-Polycaprolactone (30:70%) 

(SPCL), by two different methodologies described elsewhere: wet spinning (SPCL-WS) [39] and 

fibre-bonding (SPCL-FB) [35]. Briefly, for the production of SPCL-WS scaffolds, the polymer was 

dissolved in chloroform at a concentration of 40% (w/v) in order to obtain a polymer solution with 

proper viscosity. The polymer solution was loaded into a syringe, placed in a syringe pump 

(World Precision Instruments, UK) and a certain amount of polymer solution was subsequently 

extruded into a methanol coagulation solution. The fibre mesh structure was formed during the 

processing by the random movement of the precipitation container. The formed scaffolds were 

then dried overnight at room temperature to allow any remaining solvents to evaporate. For the 

fabrication of the SPCL-FB scaffolds, fibre-meshes previously obtained by a meltspinning 

methodology were placed in a glass mould and heated in an oven at 150ºC. Immediately after 

removing the moulds from the oven, the fibres were slightly compressed by a Teflon cylinder and 

then cooled at −15ºC. All samples were cut into discs of 5mm diameter and approximately 1mm 

thickness.  

All samples were sterilized by ethylene oxide, at 45ºC with a moisture level of 50%, in a cycle 

time of 14h and within a chamber pressure of 50 kPa [47]. 

 

2.3. In Vitro methodologies 

2.3.1 Reagents 

Dextran, Histopaque 1077, phosphate buffer saline (PBS) with and without Ca2+ and Mg2+, 

Micrococcus lysodeikticus, phorbol 12-myristate 13-acetate (PMA), lucigenin and luminal were 

obtained from Sigma, St. Louis, USA. Formyl-methionyl-leucyl-phenylalanine (fMLP) was 

purchased from Fluka, St. Louis, USA. Lipofectamine™2000 was obtained from Invitrogen, UK, 

Ham’s F-12 cell culture medium was purchased to Sigma-Aldrich, Germany, and the two-

component FS Tisseel VH was a kindly offer from Baxter AG, Vienna, Austria. 

 

2.3.2 Cells and Growth factors 

2.3.2.1 PMNs 

Inflammation triggers the influx of circulating inflammatory cells to the injury site, in a first phase, 

PMNs. Within 24 hours, macrophages also begin to migrate to the site of injury and two or three 

days following the beginning of the inflammatory process, lymphocytes begin to enter the 
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damaged area. Together with this influx, other inflammatory cells, such as mast cells and 

eosinophils will orchestrate the ongoing of the inflammatory response to the implanted device.  

It is well known that PMNs are crucial early in the development of an inflammatory response [48-

50]. Neutrophils also have the capacity to dictate the progression of the host immune system 

reaction by their capacity to produce cytokines, such as interleukins -12 and -10 (IL-12 and IL-10) 

among others [50-52]. PMNs have a high capacity to act as phagocytes of foreign bodies, 

nevertheless, the great majority of biomaterials comprises a range of dimensions incompatible 

with phagocytosis, leading PMNs to “frustrated phagocytosis” [53], resulting in the release of 

hydrolytic enzymes [54, 55], known as an oxygen-independent mechanism [56]. Lysozyme, 

present in both primary and secondary granules of PMNs, is one of the most important enzymes 

released during the inflammatory response [54, 55]. The importance of its role in the foreign body 

reaction to biodegradable biomaterials is further supported by its capacity to degrade polymers 

such as chitosan [57]. 

Another defence approach that is potentially deleterious for the implanted device occurs 

simultaneously to degranulation and is commonly designated as respiratory burst. This PMNs 

oxygen-dependent mechanism of defence, involve the consumption of oxygen (O2) by the 

activation of the Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase system, 

leading to the production of oxygen radicals and their reaction products - Reactive Oxygen 

Species (ROS) which are known to induce tissue destruction [56]. 

Human polymorphonuclear neutrophils (PMN) were isolated from heparinized fresh peripheral 

blood.  Each 10 ml of heparinized blood was placed in 10 ml of Dextran (6% solution in PBS 

without Ca2+ and Mg2+). After 20 minutes the top layer was removed with a glass pipette and 

about 6 ml were carefully added to 4 ml of Histopaque 1077 (Sigma, St. Louis, USA). After a 25 

minutes centrifugation at 21ºC and 2400rpm, the cloudy layer was firstly removed and then the 

others, keeping the bottom red pellet to resuspend it with 5 ml of PBS without Ca2+ and Mg2+. The 

tube was filled up with PBS (about 12 ml). A centrifugation for 25 minutes at 21ºC and 2400rpm 

was performed and the supernatant was removed. One ml of distilled water was added, triturated 

3 times with the glass pipette and shacked gently for 35 seconds, in order to lyse erythrocytes. 

The tube was quickly filled up with PBS without Ca2+ and Mg2+. The cells were washed by 

centrifugation, for 25 minutes at 21ºC and 2400rpm, the supernatant was removed as well as the 

top red pellet, very carefully, without touching the white pellet in the bottom. The tube was filled 

up again with PBS without Ca2+ and Mg2+ and centrifuged for 25 minutes at 21ºC and 2400rpm. 

The supernatant was removed and the volume needed of PBS without Ca2+ and Mg2+ was added 
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to count the number of cells after resuspension. The cell suspension was kept at 4ºC until 

perform the assays, within a maximum of 2 hours.  

The cell suspensions used were of 1.3X106 cells/ml for the ROS assay and 100 µl of cell 

suspension per well, and 5X105 cells/ml and 1.0 ml of cell suspension per well for the Lysozyme 

assay. 

2.3.2.2 Adipose Derived Stem Cells (ASCs) 

Adipose tissue-derived stem cells have been proved to differentiate into osteogenic lineage [58]. 

Additionally, they are able to adhere and proliferate when seeded on 3D natural-based structures 

[59]. These features made them optimal candidates to use in a starch-based construct aimed for 

bone TE. 

2.3.2.3 - Transfection of the ASCs  

It was previously reported [60] that human adipose tissue derived stem cells (ASCs) were 

successfully transfected with two different protocols. The relatively easy protocol to follow 

permitted that the cells remain viable and with a normal proliferation rate [60]. Additionally, after 

injected in the backs of mice it was possible to track their dislocation within the animal, with the 

course of time [60]. 

In other to trace the human Adipose-derived Stem Cells (hASCs) after implantation in TE 

assembled constructs, cells were prior transfected with a luciferase plasmid using 

Lipofectamine™2000. Cell transfection was carried out according to the manufacturer’s 

recommendations. Briefly, luciferase DNA (plasmid) and lipofectamine was separately diluted in 

50µl of Ham’s F-12 cell culture medium, without foetal calf serum (FCS), complemented with 1% 

L-Glutamin and antibiotics, and gently mixed. The two solutions were mixed and incubated for 20 

minutes at room temperature in order to allow the formation of “lipo-complexes”. After the 

incubation period, the mixture was added to the cells in culture and left for 4 hours, after which 

the medium was changed to fresh cell culture medium. The cells were ready to be used 

approximately 20 hours after the transfection procedure. 

 

2.3.3 - In vitro detection of human leukocytes activation 

2.3.3.1 – Lysozyme quantification 

Lysozyme, present in both primary and secondary granules of PMNs, is one of the most 

important enzymes released during the inflammatory response [54, 55]. The importance of its role 

in the foreign body reaction to biodegradable biomaterials is further supported by its capacity to 

degrade polymers such as chitosan [57].  
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A bacterial (Micrococcus lysodeikticus) suspension of 1.5 mg/ml was prepared. The isolated PMN 

were resuspended in PBS with Ca2+ and Mg2+ (to promote cell attachment) at a final 

concentration of 5X105 cells/ml. Each sample material was incubated with 1ml of the previous cell 

suspension (in PBS with Ca2+ and Mg2+), for the three pre-determined time periods of reaction 

(30 min., 1 and 2 hours), at 37ºC and in an humid atmosphere with 5% CO2 and non-adherent 24-

well plates. Three samples with the cell suspension alone were incubated for the same periods of 

reaction, acting as negative controls.  

After each incubation period, 0.5 ml of the supernatant were transferred to new wells and 0.5 

ml/well of the bacterial suspension previously prepared was added. The new wells with the 

lysozyme of the PMN (released when in contact with the materials) and the bacterial suspension 

were incubated for 30 min., at 37ºC and in a humid atmosphere with 5% CO2. After incubation, 

the optical density (OD) was recorded at 541nm. After the absorbance reading of the samples, 

controls and the standards, the lysozyme secreted form the PMN after the contact with the 

materials, was quantified normalizing the OD values to a calibration curve of known 

concentrations of lysozyme. 

2.3.3.2 – Reactive Oxygen Species Quantification 

Another defence approach that is potentially deleterious for the implanted device occurs 

simultaneously to degranulation and is commonly designated as respiratory burst. This PMNs 

oxygen-dependent mechanism of defence, involve the consumption of oxygen (O2) by the 

activation of the Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase system, 

leading to the production of oxygen radicals and their reaction products - Reactive Oxygen 

Species (ROS) - which are known to induce tissue destruction [56]. 

For the quantification of lysozyme, the considered incubation periods were of 30 minutes, 1 and 2 

hours. For the reactive oxygen species detection a kinetic study were performed from the time 

point zero to a maximum of 2 hours, without previous incubation. 

The isolated PMN were resuspended in PBS with Ca2+ and Mg2+ at a final concentration of 

1.3X106 cells/ml. A mixture of cells (100 µl), with or without cell stimulants (phorbol 12-myristate 

13-acetate (PMA), 8 µg/ml in PBS or formyl-methionyl-leucyl-phenylalanine (fMLP),  10 µg/ml in 

PBS (100 l each), with luminol 1.5 Mm in PBS and lucigenin, 5.4X10-5 M in PBS (100 µl each), 

and with or without materials were made in the wells of a white opaque 96-well plate. In this step, 

the cells, the reagents and the plate were kept on ice. The chemiluminescence was read in a 

microplate reader (Sinergy HT, BioTech). The results were obtained in terms of number of counts 

per time period. 
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2.4 Assembling of the TE constructs 

The challenges of bone TE rely not only on finding the ideal material to stimulate bone new 

formation, but also on finding the appropriate cells able to differentiate and induce bone 

regeneration. Moreover, the addition of key growth factors, such as the ones able to enhance 

vascularisation, is useful to assemble a reliable construct for bone TE. For these reasons, the 

study of the assembled was mandatory. 

For the cell tracking experiments the two types of SPCL scaffolds were seeded with the 

transfected hASCs in a concentration of 1.33x104 cells/scaffold in cell culture medium 

supplemented with 10% FCS and 1% antibiotics (penicillin/streptomycin), and incubated for 24 

hours at 37ºC and 5% CO2 in a humidified environment.  

The assembling of the TE constructs to implant in the Vascular Endothelial Growth Factor 

Receptor-2 (VEGF-R2) transgenic mice was performed as follows: each type of SPCL scaffold 

was mixed with the 2.0mL two-component FS Tisseel VH, growth factors (VEGF and FGF-2), and 

hASCs. The sealer protein component (Fibrinogen 75–115mg/ml) was reconstituted with a 

fibrinolysis inhibitor solution (Aprotinin 3,000 KIU/ml) and spiked either with VEGF (200 ng/ml) or 

FGF-2 (200 ng/ml). The thrombin component (500 IU/ml) was reconstituted with CaCl2 (40-

mmol/ml) and diluted to 4 IU/ml [61]. Scaffolds, cells (1.5x104 cells/scaffold/50µl) and growth 

factors, which were added to the fibrinogen component, were then mixed with the thrombin 

component (1:1), in a total volume of 75µl, at 37ºC. The clot was allowed to form for 15 minutes, 

at 37ºC and 5% CO2 after which 300µl of cell culture medium was added. Constructs were kept 

overnight at 37ºC and 5% CO2. 

 

2.5 Animal Models 

This research work involved the use of different animal models for the evaluation of the host 

reaction elicited by the implantation of several natural-based biomaterials, as well as related 

assembled TE constructs. Hence, the used animal models depended on the final intended use of 

the developed materials and on the material shape. Additionally, different implantation site were 

considered to compare the host response to the biomaterials. Moreover, as the TE constructs 

were assembled, specific transgenic mice models were used to address the constructs behaviour 

considering inflammation and vascularisation. 

All animal experiments were performed according to the standard operating procedures required 

from the national authorities and after their respective approval. 

 

2.5.1 - Reagents 
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Phosphate buffer saline (PBS) was obtained from Sigma-Aldrich, USA, pentobarbital from CEVA 

Santé Animale, France, ketamine hydrochloride was purchased to Schoeller Chemie Produkte, 

Vienna, Austria, xylazine hydrochloride to Bayer AG, Leverkussen, Germany and 

methylprednisolone acetate was obtained from Depo-Medrol®, Pfizer. Monoclonal mouse anti-

human CD3 antibody was purchased to Dako, Denmark, monoclonal mouse anti-rat CD18 

antibody to Serotec, UK and monoclonal mouse anti-human phosphoinositide 3-Kinase (Pi3K) 

antibody obtained from BD, Belgium. 

 

2.5.2 - Animals 

Wistar Han rats were purchased to Charles River, Spain, Sprague-Dawley rats were obtained 

from the Himberg breeding institute, Austria, Balb/c nu/nu nude mice were purchased to Harlan 

Laboratories, Germany and FVB/N-Tg(VEGF-r2–luc)Xen mice obtained from in house breeding. 

 

2.5.3 - Rat Intraperitoneal injection model 

Intraperitoneal injection models allow the injection of powder suspensions. Besides, these types 

of models are suitable to evaluate the recruitment of inflammatory cells in response to the 

implanted materials, since the recovery of the cell exudate is very easy. 

Phosphate buffer saline (PBS - 0.01M) suspensions of the powders with different concentrations 

(0.1% and 1% SI; and 0.1%, 1% and 2% chitosan) were injected into the intraperitoneal (IP) 

cavity of the rats (1 mL per animal). Three animals per concentration and per time period (16 

hours, 3 days, 7 days and 15 days) were used. One animal per each concentration and per time 

period was injected with sterile PBS as control. The animals had access to food and water ad 

libitum during the entire observation period. 

2.5.4 – Rat Subcutaneous implantation model 

The subcutaneous implantation reveals appropriate for the implantation of compact or scaffold 

materials. The main objective for using this model is to achieve information on the host reaction 

after the implantation of the material or TE construct. Thus, it is possible to evaluate the adherent 

and infiltrating cells into the materials, as wells as the reaction of the surrounding tissue to the 

implanted material.  

5.4.1 Subcutaneous implantation of the SI membranes 

For the implantation of the SI-M and the dSI-M, the Wistar Han rats were anaesthetized by an 

intraperitoneal injection of 2.5% pentobarbital. The interscapular region was shaved and 

disinfected with 70% ethanol, a full thickness skin longitudinal incision (about 1.5 cm) was 

performed in each animal and one cranial oriented subcutaneous pocket was created by blunt 
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dissection. A membrane (12 mm diameter) was positioned into each pocket and the incision was 

carefully sutured. Three animals were used per each time period of implantation (3, 7, 15 and 30 

days), and per type of membrane. For each time period of implantation a control animal, with an 

empty subcutaneous pocket, was set. The animals were kept in single cages with food and water 

ad libitum during all experimentation time. 

2.5.4.2 Subcutaneous implantation of the chit/soy membranes 

Four male Sprague-Dawley rats (2 for 1 week and 2 for 2 weeks of implantation) were 

anesthetized prior to surgery by intramuscular injection of 90 mg/kg ketamine hydrochloride and 5 

mg/kg xylazine hydrochloride. For the subcutaneous implantation of the Cht/Soy-M, 2 medial full 

thickness skin incisions were performed on the dorsum of the rats. Two craniolateral oriented 

pockets per each incision one to the left and one to the right were subcutaneously created by 

blunt dissection, and the membranes were inserted into these pockets (4 membranes/animal). 

The animals were kept in single cages with food and water ad libitum during all experimentation 

time.  

2.5.4.3 Subcutaneous implantation of the starch-based scaffolds 

Six male Sprague-Dawley rats weighting between 350g and 380g (3 for each implantation time of 

1 and 2 weeks), were used. Each test animal was anaesthetized with an intramuscular injection 

of 90 mg/Kg ketamine hydrochloride and 5 mg/Kg xylazine hydrochloride and 2 medial and 

ventral incisions of approximately 2 cm containing the subcutis and the Panniculus Carnosus 

were performed in the dorsum of the rats. Craniolateral oriented pockets (2 per incision) were 

subcutaneously created by blunt dissection. The scaffolds (4 scaffolds per animal), previously 

embedded into a sterile saline solution, were introduced into the pockets and the Panniculus 

carnosus and the skin were carefully sutured. The animals were kept in single cages with food 

and water ad libitum during all time of implantation. During the first week, the animals received 

daily 200 µg/g of body weight of metamizole sodium in drinking water ad libitum. 

For a long term reaction, six male Sprague Dawley rats, 3 for each implantation time, and 

weighting between 280g and 340g were used for the subcutaneous implantation of the SPCL 

scaffolds. The surgical procedure followed was the same as above mentioned for the 

subcutaneous implantation. 

2.5.5 - Rat Intramuscular implantation model 

The intramuscular implantation model is very similar to the subcutaneous model regarding the 

objectives and the obtained information. However, a major difference resides in the type of 

surrounding tissue that reacts with the implanted material. The muscle, being highly vascularised, 

allows an easier recruitment of circulating inflammatory cells and thus, the inflammatory reaction 
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induced by intramuscular implantations is likely to be slightly intense in comparison with the 

subcutaneous implantation of the same material or TE construct. 

Six male Sprague Dawley rats weighting between 380g and 400g (3 for each implantation time) 

were used. Each animal was anaesthetized with an intramuscular injection of 90 mg/Kg ketamine 

hydrochloride and 5 mg/Kg xylazine hydrochloride. After shaving and disinfecting the back of the 

animals, 4 paraventral skin incisions, of approximately 2 cm containing the subcutis and the 

Panniculus Carnosus, were performed under surgical sterile conditions. An incision on the fascia 

of the back muscle was performed and craniolateral oriented muscle-pockets were created by 

blunt dissection. After introducing the scaffolds (4 scaffolds per animal), previously embedded 

into a sterile saline solution, the fascia, the Panniculus carnosus and finally the skin were 

carefully sutured. The animals were kept in single cages with food and water ad libitum during all 

time of implantation. During the first week, the animals received daily 200 µg/g of body weight of 

metamizole sodium in drinking water ad libitum. 

2.5.6 - Rat skin excision model 

Despite the different healing capacities between rats and humans, rat model of partial-thickness 

skin wound can be used, under impaired healing conditions, to test wound dressers. In partially-

thickness wounds the large amount of granulation tissue formed results in wound contraction and 

re-epithelialisation which closes the wounded area allowing the regeneration of the epidermis with 

its different layers and annexes [62, 63]. Furthermore, as the subcutaneous tissue with the 

portion of the panniculus carnosus muscle in the backs of the animals is left intact [64], the re-

epithelialisation of the wound will start not only from the margins of the wound containing healthy 

and intact skin, but also from the wound bed [62, 64].  

Twenty male Sprague Dawley rats weighting between 230 g and 280 g were used for the study. 

Three groups were investigated: membranes (wound directly covered with the cht/soy-based 

(CS75) membranes); positive control (wound directly covered with Epigard® - Biovision GmbH, 

Germany); and a negative control (no direct coverage of the wound). Epigard® is composed of a 

non-textile outer layer of polytetrafluorethylene and an inner layer of soft elastic polyurethane that 

forms an open matrix to which adsorbs the wound exudate from the wound bed. This dressing 

was chosen as positive control because it is extensively used in the clinical practice as a short 

term wound dressing [65]. 

Each animal was anaesthetized with an intramuscular injection of 90 mg/kg of ketamine 

combined with 5 mg/kg xylazine after induction with 3-3.5% isofluorane and 7 L/minute of air for 

2-3 minutes. After shaving the skin, the back of the animals was disinfected and 2 paravertebral 

wounds (17 mm in diameter) were created by excision, leaving the skin smooth muscle layer 
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(panniculus carnosus) intact. The test conditions were randomly distributed among the animals. 

After dressing (except in the negative control), the wounds were protected with Bactigras® and 

then covered with Opsite Flexigrid®. Bactigras® is a paraffin gauze dressing containing 0.5% of 

chlorhexidine acetate; being soothing and non-adhesive it allows the wound to drain freely into an 

absorbent secondary dressing [66]. Opsite Flexigrid®, a vapour permeable adhesive film dressing 

which is the standard in moist wound healing [67] was used as a secondary dressing. The whole 

abdomen of each animal was protected with stretching bandages to prevent the removal of the 

whole set of dressings by scratching and biting (Fig. 1). At days 0 (surgery day) and 7, 

methylprednisolone acetate (Depo-Medrol®, Pfizer) was subcutaneously injected (20 mg/kg BW) 

to impair wound healing [68] and inhibit hair growth. 

The animals were kept separately and received daily analgesia with metamizole sodium (200µg/g 

BW) and sedation with diazepam (2.5mg/125ml water) in drinking water. 

The bandages were changed every 3-4 days.  

2.5.7 - Nude Mice Subcutaneous implantation model 

Nude mice have a hair absence which is a secondary effect from its major deficiency. These 

animals do not possess thymus, the organ responsible for T lymphocytes maturation. Thus, nude 

mice are immunossupressed animals which allow exogenous cells transplantation.  

The in vivo fate of the in vitro transfected hASCs seeded onto SPCL scaffolds was followed in 

nude mice. Thirteen female Balb/c nu/nu nude mice, with an average weight of 21.6g±1.2 were 

used: 6 animals to implant the SPCL-WS scaffolds, 6 animals to implant the SPCL-FB scaffolds 

and one animal as control. All surgical procedures were performed under sterile conditions in a 

vertical laminar flow hood. Each animal was intraperitoneally (IP) anaesthetized with ketamine 

(60 mg/kg) and xylazine (7.5 mg/kg). Subsequently, the skin of the mice was disinfected with 

betaisodona and two lateral incisions of approximately 0.5 cm, containing the subcutis and 

Panniculus carnosus, were performed in the back of the animals. Two caudal-lateral oriented 

pockets were created in each animal by blunt dissection, where the TE constructs with the 

transfected ASCs were inserted. After implantation, the Panniculus carnosus and the skin of the 

animals were carefully sutured.  
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Figure 2.1: Schematic representation of a nude mouse with the areas considered for the capture of the 

luminescence signal emitted by the transfected cells seeded on the SPCL-based scaffolds: I and II 

correspond to the implantation sites; III corresponds to the dorsum (back) of the animals to where the cells 

eventually migrate. 

 

2.5.8 - Transgenic Mice Subcutaneous implantation model 

VEGFR2-luc transgenic mouse model was established [69] using the murine VEGFR2 promoter 

to direct the expression of the luciferase reporter. It is used to assess the expression of VEGFR2 

under particular conditions. It is well reported that VEGFR2 mediates most of the mitogenic, cell 

survival, and vascular permeability effects of VEGF [70, 71]. Moreover, as VEGFR2 plays an 

important role in many aspects of blood vessel growth, an in vivo monitoring of the VEGFR2 gene 

expression, with non-invasive techniques was found useful to achieve its real time function in 

angiogenesis [72]. 

Thirty eight FVB/N-Tg(VEGF-r2–luc)Xen mice (VEGFR2-LUC) [69], with an average weight of 

33.8 g±3.6 were used to assess the effect of the addition of VEGF, FGF-2, hASCs or fibrin 

sealant to the SPCL scaffolds for vascularisation. These mice carry a transgene that contains a 

4.5 kb murine VEGF-R2 promoter fragment that drives the expression of a firefly luciferase 

reporter protein.  

Six test groups were established per type of scaffold (table 2.1): a) untreated control to measure 

endogenous expression of VEFG-R2 due to surgical procedure; b) scaffold group to measure 

expression of VEFG-R2 due to scaffold implantation (SPCL-WS and SPCL-FB); c) scaffold plus 

FS to measure the expression of VEGF-R2 due to the use of FS (SPCL-WS+FS and SPCL-

FB+FS); d) scaffold plus FS and hASCs group, to measure the expression of VEGF-R2 due to 

the presence of hASCs (SPCL-WS+FS+hASCs and SPCL-FB+FS+hASCs); e) scaffold plus FS, 

hASCs and VEGF (200 ng/mL) to measure the expression of VEGF-R2 induced by the VEGF 
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delivery (SPCL-WS+FS+hASCs+VEGF and SPCL-FB+FS+hASCs+VEGF); and f) scaffold plus 

FS, ASCs and FGF-2 (200 ng/mL), to measure the expression of VEGF-R2 induced by the FGF-2 

delivery (SPCL-WS+FS+hASCs+FGF-2 and SPCL-FB+FS+hASCs+FGF-2).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Schematic representation of a transgenic VEGFR2-LUC mouse with the areas considered for 

the capture of the luminescence signal emitted by the transfected cells seeded on the SPCL-based TE 

constructs: I corresponds to incision area; II and III correspond to the left and right implant sites (pockets). 

 

Each animal was anaesthetized using 3% isoflurane for induction and maintaining with an i.p. 

injection of ketamine (60 mg/kg) and xylazine (7.5 mg/kg). Mice were injected subcutaneously 

with luciferin (150 mg/kg) and imaged with the in vivo imaging system (VivoVisions IVISs, 

Xenogen, Alameda, CA) to acquire the background image signal corresponding to the pre-

surgical activity, set to 100%) as reported below. After this, each animal’s dorsum was then 

shaved and disinfected, and a 1 cm incision at the caudal aspect of the neck was made. For the 

subcutaneous implantation, a caudal lateral access to each flank was bluntly subcutaneously 

created through this incision, forming 2 pockets per animal. Into each pocket, the construct was 

inserted accordingly to the different test groups. Subsequent measurements in the pre-

determined areas were referenced to the pre-surgical baseline and obtained immediately after 

surgery and on days 3, 6, 9 and 13 after implantation, as well as 15 minutes after luciferin 

injection. 
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Table 2.1: Distribution of the test groups for the in vivo implantation on the transgenic FVB/N-Tg(VEGF-

r2–luc)Xen mice. 

 

Group Condition 

a Control – subcutaneous pockets without any implant 

b SPCL-WS SPCL-FB 

c SPCL-WS+FS SPCL-FB+FS 

d SPCL-WS+FS+hASCs SPCL-FB+FS+hASCs 

e SPCL-WS+FS+hASCs+VEGF SPCL-FB+FS+hASCs+VEGF 

f SPCL-WS+FS+hASCs+FGF SPCL-FB+FS+hASCs+FGF 

 

 

2.6 Post-implant Analysis 

2.6.1 - Macroscopic Evaluation 

The skin wounds of the animals from the rat skin excision model were periodically verified. 

Macroscopic analysis of the wounds was carried out at days 3, 7 and 14 and the images taken 

used for the planimetric evaluation of the healing process. The evaluation was performed with the 

LUCIA software by two independent researchers blinded to the experimental condition.  

2.6.2 - Cytological preparations 

The kinetics of the inflammatory reaction induced by the injected suspensions (made from the Cht 

and SI powders) was assessed by analysis of the peritoneal exudate. The animals were 

anaesthetized with a subcutaneous injection of 2.5% pentobarbital and sacrificed with an 

intracardial overdose of anaesthetic. The abdominal area of each animal was disinfected with 

70% ethanol and an incision in the abdominal skin and the linea alba was performed, in order to 

expose the external abdominal wall as most as possible to the subsequent lavage. Thirty five mL 

of sterile PBS solution were injected into the intraperitoneal cavity, and the abdomen was 

massaged in order to recover the inflammatory cells adherent to the abdominal organs and 

peritoneal cavity. The peritoneal exudate was collected in a syringe and stored on ice until further 

analysis. The total number of leukocytes was counted using a haemocytometer and cytospins of 

1x106 cells were performed by cytocentrifugation (5 minutes at 1000 rpm). Cells were then gently 

washed in tap water and fixed in formaldehyde-ethanol (50/50 (v/v) – formaldehyde 3.7% and 

absolute ethanol) for 45 seconds. The Wright’s staining for blood samples (Hemacolor, Merck, 

Germany) was performed and after being dried, each slide was observed in an optical 

microscope. A minimum of 300 cells per sample was counted in different areas of the cytospin 

and the different types of leukocytes distinguished. 
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2.6.3 – Explants 

The animals with subcutaneously implanted SI-M, dSI-M and Cht/Soy-M were anaesthetized, at 

the end of each implantation period, respectively with an intraperitoneal injection of 2.5% 

pentobarbital or with an intramuscular injection of 90 mg/kg ketamine hydrochloride and 5 mg/kg 

xylazine hydrochloride, and sacrificed with an intracardial overdose of anaesthetic. The implanted 

membranes, the respective surrounding tissue and the lymph nodes of the rats with Cht/Soy-M 

were explanted  

2.6.4 - Histological preparations 

Histological preparations are obtained from fixed animal tissues. The samples follow a series of 

procedures to an ultimate goal of having thin (2-5µm) paraffin embedded sections of the samples. 

The histological sections should illustrate the tissue with all its components in order to understand 

some interactions and to recognize microscopical structures. For that, sections have to be 

stained. 

2.6.4.1 Haematoxylin and Eosin (HE) Staining 

HE staining is a standard protocol to identify, microscopically the basic morphology of the cells in 

the tissues, formalin fixed and paraffin embedded. Haematoxylin is directed to the nucleus 

providing it with a dark blue colour. By its turn, eosin stains the cytoplasm of the cell with a pink 

colour. Thus, the main cell structures are easily indentified. 

At the end point times (1, 2, 8 and 12 weeks), the animals with the SPCL scaffolds 

subcutaneously implanted were intramuscularly anaesthetized and sacrificed with an intracardial 

overdose of 90 mg/Kg ketamine hydrochloride and 5 mg/Kg xylazine hydrochloride. From each 

animal the 4 implanted scaffolds and surrounding tissue, as well as the axillary and inguinal 

lymph nodes, were explanted. The explanted samples were either fixed in 3.7% formalin for 

histological evaluation, or frozen for posterior molecular biology analysis. 

Two weeks after the implantation), the animals with the SPCL scaffolds intramuscularly implanted 

were IP anaesthetized and subsequently sacrificed with an intracardial overdose of ketamine (60 

mg/kg) and xylazine (7.5 mg/kg). The scaffolds and surrounding tissue were explanted and, half 

of the sample was fixed in 3.7% formalin for histological analysis, and the other half was snap 

frozen for molecular biology evaluation. Histology was performed according to existing standard 

protocols for HE.  

In the rat skin excision model, at each end time point (1 and 2 weeks), the animals were 

anaesthetized with isofluorane and then euthanized by and intracardial overdose of 

ketamin/xylazine. The wound region and the surrounding healthy skin were explanted. Central 
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wound cross-sections were fixed for histological analysis, in 3.7% formalin, and then paraffin 

embedded, sectioned and stained according to a routine HE protocol.  

The histological samples were analysed using an Axioplan Imager Z1 microscope (Zeiss, 

Germany). The histological analysis also included the measurement of the length of the wound, 

which permitted to establish a correlation with the planimetric assessment of the wound areas. 

The length of the wounds was measured, using the standard microscope scale, after the 

composition of multiple standardized histological pictures including the full wounded area and the 

healthy margins. 

2.6.4.2 - Massson Goldner Trichrome Staining 

Masson Trichrome staining is used to identify collagen fibres within the tissue structure. Similarly 

to haematoxylin and eosin staining, is used in formalin fixed and paraffin embedded sections. The 

overall image provided by this staining is such: collagen fibres stained in bluish-green, nuclei in 

dark blue-black and the remaining background in red. 

2.6.4.3 Immunohistochemistry 

Immunohistochemistry is based on a highly specific reaction antigen-antibody. An antibody is 

directed against the specific antigen aimed to be identified. In the situation of having formalin 

fixed and paraffin embedded sections, the most used protocol involves the use of an enzyme-

conjugated secondary antibody with specificity to the primary antibody used. The enzyme from 

the secondary antibody reacts with a specific protein (avidin or streptavidin) which, by its turn will 

be revealed by a die, such as horseradish peroxidise (HRP). Thus, the localisation of a specific 

antibody is detected by the brownish-reddish labelling. 

In this particular work, immunohistochemistry was performed in formalin fixed and paraffin 

embedded sections and the antibodies used were: monoclonal mouse anti-human CD3 antibody 

(Dako, Denmark) with cross reactivity for rat T lymphocytes, a monoclonal  mouse anti-rat CD18 

antibody (Serotec, UK) for Integrin β2 chain of recruited leukocytes, and a monoclonal mouse 

anti-human phosphoinositide 3-Kinase (Pi3K) antibody (BD, Belgium) with cross reactivity for rat 

activated and proliferating lymphocytes, following standard protocols.  

2.6.5 - Molecular Biology Analysis 

The samples recovered from the animals subcutaneously and intramuscularly implanted with the 

SPCL scaffolds and SPCL-based TE constructs, were processed for reverse transcriptase 

polymerase chain reaction (RT-PCR). The procedure was performed according standard 

established RNA extraction, cDNA synthesis and amplification, as well as agarose gel detection 

protocols.  
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For the SPCL scaffolds subcutaneously and intramuscularly implanted in rats, the detection of the 

expression of IL-1α, IL-18, IL-10, IL-13, IFN-γ and MHC class II genes was carried out. The used 

primers sequences and amplification conditions are referred in table 2.2. 

 

 
 
Table 2.2: Forward and Reverse seuences of the genes detected by RT-PCR on rat samples. 

 

 
 
 
 
For the SPCL-based TE constructs subcutaneously implanted in nude and transgenic mice, the 

expression of vascularisation and inflammation specific genes was performed with the primers 

and amplification conditions from table 2.3. 

 

 

 

Function Gene Sequences 
Tm 

(ºC) 
Bp 

Housekeeping 

gene 
GAPDH 

Sense - GGTGATGCTGGTGCTGAGTA 59.4 
81 

Antisense - GGATGCAGGGATGATGTTCT 57.3 

Pro-

inflammatory 

IL-18 
Sense - AGATGTGGAACTGGCAGAGG 59.4 

220 
Antisense - CCCATTTGGGAACTTCTCCT  57.3 

IL-1α 
Sense –GCAAAGCCTAGTGGAACCAG 59.4 

244 
Antisense -GCAGAAGGTGCACAGTGAGA 59.4 

Anti-

inflammatory 

IL-10 
Sense - GAATTCCCTGGGAGAGAAGC 59.4 

219 
Antisense - CCGGGTGGTTCAATTTTTCAT  55.9 

IL-13 
Sense - ATCGAGGAGCTGAGCAACAT   57.3 

189 
Antisense - CGAGGCCTTTTGGTTACAGA 57.3 

IFN-γ 
Sense - GCCCTCTCTGGCTGTTACTG 61.4 

221 
Antisense - CTGATGGCCTGGTTGTCTTT 57.3 

MHC class 

II 

Sense - TCCCAGATACACAGCAGCAG  59.4 
320 

Antisense -  CATGCGAAGGTTCTCCAGTT 57.3 
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Table 2.3: Forward and Reverse sequences of the genes detected by RT-PCR on mice samples. 

 

 

2.6.6 - In vivo luminescence 

One of the aims of the in vivo luminescence technique used in this particular work was to identify, 

in the living organism, the movement of luciferase transfected cells after seeded into starch-

based scaffolds and after subcutaneous implantation in nude mice. The other objective of the 

study to use in vivo luminescence was to identify the expression of VEGF-R2 after implantation of 

starch-based TE constructs, after subcutaneous implantation into FVB/N-Tg(VEGF-r2–luc)Xen 

mice (VEGFR2-LUC). 

2.6.6.1 Nude mice luminescence 

The bioluminescence signal, from the in vivo luciferase activity that identifies the location of the 

transfected cells, was quantified (emitted photon counts per second) using the Live Image 

Software (Xenogen®). Specific areas for the signal detection, considering the original location of 

the implants and possible migration of the cells from the constructs, were pre-determined 

(Fig.1A): I and II correspond to the left and right implant sites; III corresponds to the dorsum of the 

animals, the most probable migration localization. Bioluminescence images were collected 

immediately after surgery and on days 1, 3, 6, 9, and 13. The luciferase activity was measured 15 

minutes after luciferin subcutaneous injection and normalised to the respective areas for further 

graphical representation. 

2.6.6.2 Transgenic mice luminescence 

Prior to surgical procedure, specific areas for the bioluminescence detection were established. 

One correspondent to the incision area and other two correspondents to the left and right implant 

Function Gene Sequences Tm (ºC) Bp 

Vascularisation 

VEGF-α 
Sense - CCGAAACCATGAACTTTCT 55.19 

604 
Antisense - CGTTCGTTTAACTCAAGCTG 56.31 

VEGF-R1 
Sense - GAGGGATAACAGGCAATTC 54.59 

960 
Antisense - CCCAGCAAGATCGTATAGTC 54.91 

Inflammation 

IL-4 
Sense - TCATCCTGCTCTTCTTTCTC 54.67 

325 
Antisense - GATGTGGACTTGGACTCATT 54.82 

IFN-γ 
Sense - CTACCTTCTTCAGCAACAGC 55.36 

568 
Antisense - TGTAGACATCTCCTCCCATC 54.92 

TNF-α 
Sense - GTCTCAGCCTCTTCTCATTC 54.03 

654 
Antisense - CAGAGTAAAGGGGTCAGAG 54.57 
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sites (pockets). The signal detected at the incision site correlates with the expression of the 

VEGFR2 gene with the ongoing inflammatory process as the incision heals. After the surgical 

implantation procedure, subsequent measurements in the pre-determined areas were referenced 

to the pre-surgical baseline and obtained immediately after surgery and on days 3, 6, 9 and 13 

after implantation, as well as 15 minutes after luciferin injection. 

 
 
2.7 Statistical Analysis 

All the obtained data, obtained from the quantification experiments [73], was analysed by a single 

factor ANOVA test and the significance value was set at p<0.05. 
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Chapter III 

In vitro evaluation of the behaviour of human polymorphonuclear neutrophils in direct 

contact with chitosan-based membranes 

 

 

3.1 Abstract 

Several novel biodegradable materials have been proposed for wound healing applications in the 

past few years. Taking into consideration the biocompatibility of chitosan-based biomaterials, and 

that they promote adequate cell adhesion, this work aims at investigating the effect of chitosan- 

based membranes, over the activation of human polymorphonuclear neutrophils (PMNs). The 

recruitment and activation of polymorphonuclear neutrophils (PMNs) reflects a primary reaction to 

foreign bodies. Activation of neutrophils results in the production of reactive oxygen species 

(ROS) such as O2- and HO- and the release of hydrolytic enzymes which are determinant factors 

in the inflammatory process, playing an essential role in the healing mechanisms.  

PMNs isolated from human peripheral blood of healthy volunteers were cultured in the presence 

of chitosan or chitosan/soy newly developed membranes. The effect of the biomaterials on the 

activation of PMNs was assessed by the quantification of lysozyme and ROS. 

The results showed that PMNs, in the presence of the chitosan-based membranes secrete similar 

lysozyme amounts, as compared to controls (PMNs without materials) and also showed that the 

materials do not stimulate the production of either O2- or HO-. Moreover, PMNs incubated with the 

biomaterials when stimulated with phorbol 12-myristate 13-acetate (PMA) or formyl-methionyl-

leucyl-phenylalanine (fMLP) showed a chemiluminescence profile with a slightly lower intensity, to 

that observed for positive controls (cells without materials and stimulated with PMA), which 

reflects the maintenance of their stimulation capacity. 

Our data suggests that the new biomaterials studied herein do not elicit activation of PMNs, as 

assessed by the low lysozyme activity and by the minor detection of ROS by chemiluminescence. 

These findings reinforce previous statements supporting the suitability of chitosan-based 

materials for wound healing applications. 
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*This chapter is based on the following publication: 

 

T. C. Santos, A. P. Marques, S. S. Silva, J. M. Oliveira, J. F. Mano, A. G. Castro, R. L. Reis, In 

vitro evaluation of the behaviour of human polymorphonuclear neutrophils in direct contact with 

chitosan-based membranes, 2007. Journal of Biotechnology, 132:218-226.  
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3.2 Introduction 

In the past few years a huge effort has been made to create the ideal wound dressing and skin 

substitutes to respond to the increasing needs of mankind. Several research groups suggested 

that chitosan is a promising material for regenerative medicine [1-4]. Chitosan-based membranes 

were shown to promote the proliferation of human skin fibroblasts and keratinocytes in vitro [3] 

and the application of a chitosan-based hydrogel in mice wounds had proved to accelerate 

wounding [5]. Furthermore it was demonstrated that wounds in human skin heal better if covered 

with chitosan-based membranes [6, 7], beyond its proven antimicrobial properties [8, 9].  

After implantation of a medical device, the tissue will inevitably be traumatized by the implantation 

procedure [10-13] triggering an inflammatory response. This response to trauma and to the 

implantation of biomaterials is  associated to the secretion of a variety of mediators [10-13]. Their 

action results in the recruitment of certain populations of cells that, if not properly regulated, can 

cause tissue damage and ultimately lead to the rejection of the implant [13]. The concomitant 

increased vascular permeability in the inflammatory response allows the influx of circulating 

inflammatory cells to the implantation site, in a first phase, polymorphonuclear neutrophils 

(PMNs). Within 24 hours, macrophages also begin to migrate to the site of injury and two or three 

days following the beginning of the inflammatory process, lymphocytes begin to enter the 

damaged area. Together with this influx, other inflammatory cells, such as mast cells and 

eosinophils will orchestrate the ongoing of the inflammatory response to the implanted device.  

It is well known that PMNs are crucial early in the development of an inflammatory response [12, 

14, 15]. Neutrophils also have the capacity to dictate the progression of the host immune system 

reaction by their capacity to produce cytokines, such as interleukin -12 and -10 (IL-12 and IL-10) 

among others [12, 16, 17]. PMNs have a high capacity to act as phagocytes of foreign bodies, 

nevertheless, the great majority of biomaterials comprises a range of dimensions incompatible 

with phagocytosis, leading PMNs to “frustrated phagocytosis” [18] resulting in the release of 

hydrolytic enzymes [19, 20], known as an oxygen-independent mechanism [21]. Lysozyme, 

present in both primary and secondary granules of PMNs, is one of the most important enzymes 

released during the inflammatory response [19, 20]. The importance of its role in the foreign body 

reaction to biodegradable biomaterials is further supported by its capacity to degrade polymers 

such as chitosan [22]. 

Another defence approach that is potentially deleterious for the implanted device occurs 

simultaneously to degranulation and is commonly designated as respiratory burst. This PMNs 

oxygen-dependent mechanism of defence, involve the consumption of oxygen (O2) by the 

activation of the Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase system, 
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leading to the production of oxygen radicals and their reaction products - Reactive Oxygen 

Species (ROS) which are known to induce tissue destruction [21]. 

The aim of this study was to gain further knowledge on the biological reactions to chitosan and 

chitosan/soy based membranes meant for wound healing applications. Reis and his group have 

shown previously that [23], chitosan-based membranes were non cytotoxic and support mouse 

fibroblast cell adhesion and spreading. These new systems combine the blending of natural 

polymers, such as chitosan and soy [23, 24], in order to develop hybrid materials for tissue 

engineering and regenerative medicine. In fact, chitosan based systems have been proposed by 

the same group for several different applications within the tissue and regenerative field [24-26]. 

Therefore the present study intended to focus on the effect of the presence of the newly 

developed chitosan-based membranes over the in vitro response of PMNs isolated from human 

blood. The considered newly developed biomaterials are the chitosan/soy blends, thus the 

membranes of chitosan blended with soy in two forms, one comprehending simply the blend of 

chitosan with soy (Cht/Soy), and the other which is the same blend but cross-linked with TEOS 

(Cht/Soy/TEOS). PMNs degranulation was addressed by quantification of the granular hydrolytic 

enzyme lysozyme while the respiratory burst mechanisms were followed by a chemiluminescence 

assay [27, 28] knowing that PMNs can be stimulated in vitro with phorbol 12-myristate 13-acetate 

(PMA) [29, 30] or formyl-methionyl-leucyl-phenylalanine (fMLP) [27, 30, 31].  

 

3.3 Materials and Methods 

3.3.1 Materials tested 

Reagent grade chitosan (Cht, Sigma, USA) with a deacetylation degree of 85% and viscosimetric 

molecular weight of about 700 KDa, Soy protein isolate (Loders Crocklaan, The Netherlands) and 

tetraethyl orthosilicate (TEOS, Aldrich, USA) were used on the preparation of the different 

membranes. All other reagents were also analytical grade and used as received.  

Chitosan, chitosan/soy protein blended membranes (Cht) were prepared by means of solvent 

casting, as previously reported by the group of Reis [23]. By its turn, the chitosan-soy protein 

hybrid membranes (Cht/Soy) were produced by means of a combination of a sol-gel method and 

solvent casting [32]. Firstly, a 4 wt% chitosan solution was prepared by dissolving chitosan in 0.2 

M acetic acid solution. Secondly, a 1 wt% soy suspension (water/glycerol (10 % w/v)) was also 

prepared and the pH adjusted to 8.0 ± 0.3 with 1 M sodium hydroxide solution. Then, the 

dispersion was heated in a water bath at 50ºC for 30 min. The blend was prepared by means of 

mixing the solutions (75/25 wt% chitosan-soy protein) under constant agitation for the period of 1 

hour. The cross-linking agent TEOS and 0.5 M chloridric acid (HCl) solution in the molar ratio 
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(TEOS:HCl) of 1:0.1 wt% were added to the blend to Cht: TEOS ratio of 10:0.1wt% , under 

constant stirring for 24 hours. Following the solvent casting methodology, the blended solutions 

was poured into a Petri dish and allowed to dry at room temperature for several days, followed by 

neutralisation using a 0.1 M sodium hydroxide solution, as described elsewhere [32].  

The referred to chitosan-based membranes were considered for the studies: chitosan 

membranes (Cht), membranes of chitosan blended with soy in two forms, one comprehending 

simply the blend of chitosan with soy (Cht/Soy), and the other which is the same blend but cross-

linked with TEOS, i.e. hybrid membranes (Cht/Soy/TEOS). Three samples of each different 

membrane were tested and four repetitions of each test were performed. The samples were 

sterilized by ethylene oxide (EtO) in conditions that have been described previously [33]. 

For the quantification of lysozyme the considered incubation periods were of 30 minutes, 1 hour 

and 2. For the reactive oxygen species detection a kinetic study were performed from the time 

point zero to a maximum of 2 hours, without previous incubation. 

 

3.3.2 Cells 

Human polymorphonuclear neutrophils (PMN) were isolated from heparinized fresh peripheral 

blood.  Each 10 ml of heparinized blood was placed in 10 ml of Dextran (Sigma, St. Louis, USA) 

(6% solution in phosphate buffer saline (PBS) without Ca2+ and Mg2+ – Sigma, St. Louis, USA). 

After 20 minutes, about 6 ml of the top layer was removed with a glass pipette and carefully 

added to 4 ml of Histopaque 1077 (Sigma, St. Louis, USA). After a 25 minutes centrifugation at 

21ºC and 2400rpm, the cloudy layer was firstly removed and then the others, keeping the bottom 

red pellet to resuspend it with 5 ml of PBS without Ca2+ and Mg2+. The tube was filled up with 

PBS (about 12 ml). A centrifugation for 25 minutes at 21ºC and 2400rpm was performed and the 

supernatant was removed. One ml of distilled water was added, triturated 3 times with the glass 

pipette and shacked gently for 35 seconds, in order to lyse erythrocytes. The tube was quickly 

filled up with PBS without Ca2+ and Mg2+. The cells were washed by centrifugation, for 25 minutes 

at 21ºC and 2400rpm, the supernatant was removed as well as the top of the red pellet, very 

carefully, without touching the white pellet in the bottom. The tube was filled up again with PBS 

without Ca2+ and Mg2+ and centrifuged for 25 minutes at 21ºC and 2400rpm. The supernatant 

was removed and the volume needed of PBS without Ca and Mg was added to count the number 

of cells after resuspension. The cell suspension was kept at 4ºC until perform the assays, within a 

maximum of 2 hours.  
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The cell suspensions used were of 1.3X106 cells/ml for the Reactive Oxygen Species assay and 

100 µl of cell suspension per well, and 5X105 cells/ml and 1.0 ml of cell suspension per well for 

the Lysozyme assay. 

 

3.3.4 Lysozyme Quantification 

A bacterial (Micrococcus lysodeikticus – Sigma, St. Louis, USA) suspension of 1.5 mg/ml was 

prepared. The isolated PMN were resuspended in PBS with Ca and Mg (Sigma, St. Louis, USA) 

(to promote cell attachment) at a final concentration of 5X105 cells/ml. Each sample material (14 

mm diameter) was incubated with 1ml of the previous cell suspension (in PBS with Ca2+ and 

Mg2+), for the three pre-determined time periods of reaction (30 min., 1 and 2 hours), at 37ºC and 

in an humid atmosphere with 5% CO2 and non-adherent 24-well plates. Three wells with the cell 

suspension alone were incubated for the same periods of reaction, acting as negative controls.  

After each incubation period, 0.5 ml of the supernatant were transferred to new wells and 0.5 

ml/well of the bacterial suspension previously prepared was added. The new wells with the 

lysozyme of the PMN (released when in contact with the materials) and the bacterial suspension 

were incubated for 30 min., at 37ºC and in an humid atmosphere with 5% CO2. After incubation, 

the optical density (OD) was recorded at 541nm. The concentration of the viable cells in the 

bacterial suspension is quantified by the changes in the turbidity of the bacterial suspension. The 

cell wall of the bacteria acts as a substrate for lysozyme, leading to the cleavage and consequent 

lysis of the cell. The intact bacterial suspension is characteristically opaque, but after incubation 

with a lysozyme solution, the turbidity decreases with the increasing bacterial lysis [34]. After the 

absorbance reading of the samples, controls and the standards, the lysozyme secreted form the 

PMN after the contact with the materials, was quantified normalizing the OD values to a 

calibration curve of known concentrations of lysozyme. 

 

3.3.5 Reactive Oxygen Species Quantification 

The isolated PMN were resuspended in PBS with Ca2+ and Mg2+ at a final concentration of 

1.3X106 cells/ml. A mixture of cells (100 µl), with or without cell stimulants (phorbol 12-myristate 

13-acetate (PMA) (Sigma, St. Louis, USA), 8 µg/ml in PBS or formyl-methionyl-leucyl-

phenylalanine (fMLP) (Fluka, , St. Louis, USA),  10 µg/ml in PBS (100 µl each), with luminol 

(Sigma, St. Louis, USA) 1.5 Mm in PBS and lucigenin (Sigma, St. Louis, USA), 5.4X10-5 M in 

PBS (Sigma, St. Louis, USA) (100 µl each), and with or without materials were made in the wells 

of a white opaque 96-well plate. In this step, the cells, the reagents and the plate were kept on 
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ice. The chemiluminescence was read in a microplate reader (Sinergy HT, BioTech). The results 

were obtained in terms of number of counts per time period. 

 

3.4 Results and Discussion 

3.4.1 Lysozyme Secretion 

Wound healing is a very complex process involving a number of cells, mediators and molecules 

that, if not properly regulated, may lead to severe damage of the surrounding tissues. If the 

wounded tissue is the skin, the inflammatory response is accompanied by re-epithelialization, 

formation of granulation tissue and contraction of connective tissue [16]. Neutrophils play an 

important role in the development of the inflammatory response and, in the particular situation of 

a skin wound they can dictate the progression of the healing. PMNs can be activated by multiple 

mechanisms [35] resulting in an increased phagocytic activity as well as in the release of 

hydrolytic enzymes, such as lysozyme, from their cytoplasmic granules [20, 36]. When activated 

neutrophils phagocytose necrotic tissue debris [12] but also try to phagocytose the damaging 

material which is promoted by a coating of immunoglobulins and proteins of the complement 

system [12]. The attempt to eliminate the harmful agent is endorsed by the lytic enzymes, 

including lysozyme that can be released during the process of frustrated phagocytosis, when the 

material is too large to be internalized, or in association with the respiratory burst [11]. 

Nevertheless, the lytic activity of neutrophils is limited by their inability to regenerate lysosomal 

enzymes and, after the “respiratory burst”, neutrophils degenerate [12, 21]. 

In the present work, the lysozyme secreted by the PMNs in direct contact with the Chitosan-

based membranes was quantified by a spectrophotometric assay. The amount of lysozyme 

secreted by PMNs after 30 minutes of incubation with the chitosan (Cht), chitosan and soy 

(Cht/Soy) and Cht/soy cross-linked with TEOS (Cht/Soy/TEOS) membranes was similar (Fig. 

3.1). Moreover, it was not observed a significant difference from the values obtained for the 

negative control, where the cells were incubated with Tissue Culture Polystyrene (TCPS). 

Increasing incubation times (1 and 2 hours) revealed that the peak of lysozyme secretion 

occurred at 1 hour and that after that time the amount of enzyme produced by the cells reached 

the values of the earlier time point. However, as the same profile was observed for all the tested 

conditions, it can be concluded that the amount of lysozyme secreted at each time point was 

comparable for the 3 types of chitosan-based membranes and the negative control and that there 

were no significant differences along the assay.  
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The lysozyme quantification data suggest that the membranes of Cht, Cht/soy and Cht/Soy/TEOS 

were able to activate the PMNs in a comparable degree as the TCPS. Therefore the developed 

chitosan-based membranes did not have any significant effect on PMNs degranulation. 

 

 

Figure 3.1: Amount of lysozyme secreted by the PMN after 30, 60 and 120 minutes in direct contact with 

Chitosan-based membranes. No statistical difference was detected when comparing the lysozyme 

secretion profile between the Chitosan-based membranes and the Tissue Culture Polystyrene (TCPS). 

 

 

3.4.2 Chemiluminescence 

The increased metabolism of activated neutrophils is translated in the so called “respiratory 

burst”, which results in the generation of superoxide anions (O2-), hydrogen peroxide (H2O2), 

singlet oxygen (1O2) and hydroxyl radicals (OH-) [12, 13, 21]. Despite the apoptotic self 

destruction mechanism of PMNs once they finish their functions at the wound site and their rapid 

recognition and clearance by macrophages [37], the accumulation of PMNs at injury sites is not 

unusual to occur. This gathering of PMNs at the site of implantation or injury, specially in the 

cases of chronic wounds, blitz the environment with free radicals that kill healthy host cells [16]. In 

fact, it is well known that the respiratory burst of neutrophils has harmful effects on themselves 

and on surrounding healthy tissues [38, 39]. Therefore, it is imperative to gain further knowledge 

on the in vitro behaviour of PMNs in direct contact with newly developed materials to predict, as 

much as possible, their role in the in vivo inflammatory reaction. 

The assessment of the effect of the chitosan-based membranes on PMN activation was further 

achieved by the quantification of the produced ROS using a chemiluminescence assay [30], in 
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the presence and absence of cell stimulants (PMA and fMLP). This two cell stimulants were 

chosen due to their different mechanisms of action; PMA activates neutrophils directly at the level 

of Protein Kinase C [35, 40] while fMLP activates NADPH-oxidase [35] thus allowing to conclude 

about the signalling pathways activated by the contact with the materials studied. 

As previously reported [41], the developed chitosan based membranes used in this work showed 

the following features: (i) higher surface roughness (7.0 µm) of the Cht/Soy/TEOS membranes in 

comparison to Cht and Cht/Soy membranes (4.6 and 2.5 µm, respectively); (ii) contact angles 

values between 80° and 117° and thus an hydrophobic nature, and (iii) increasing of surface 

energy of the blended membranes in comparison to Cht membranes. All resulting changes are 

related to both incorporation of soy protein and inorganic phase (TEOS). More details about the 

characterization of the membranes can be found elsewhere [41]. 

The kinetics of PMN activation induced by PMA and fMLP was determined under the same 

conditions as the assays performed in the presence of the materials in study and represents the 

maximum capacity of the cells to be activated under the defined conditions (Fig. 3.2). Superoxide 

anion (O2-) generation was detected by the oxidation of lucigenin while the generation of the 

hydroxyl anion (HO-) was detected from the oxidation of luminol. In the tested conditions, PMA 

was able to stimulate human neutrophils for the production of either O2- or HO-. The stimulation 

with PMA induced the cells to start to produce HO- after 10 min. of incubation. This stimulation 

was prolonged for approximately 1h12min., reaching its peak around minute 25 after the 

beginning of the stimulation with PMA.  

The production of O2-, represents a later and prolonged defence mechanism compared to the 

production of HO-, once it started 15 min. after the incubation with PMA and reached a maximum 

value approximately 1h after. The stimulation with fMLP induced the PMNs to produce either O2- 

or HO- at similar periods of time which started around minute 15, lasted for 1h 20min and showed 

a maximum stimulation after 30min of the beginning of stimulation. Nevertheless, the O2- 

production was lower than the production of HO- and the amount of these ROS was much lower 

in the fMLP stimulation compared to the stimulation with PMA.  

The chemiluminescence results show that the chitosan-based membranes did not stimulate 

PMNs to produce HO- (Figs. 3.3A, 3.4A and 3.5A) and represent a weak stimulus for the 

production of O2- (Figs. 3.3B, 3.4B and 3.5B). In fact, the luminol oxidation signals presented 

outlines comparable to the observed for the negative controls where the cells were incubated with 

PBS. Nevertheless, since PMNs were able to produce HO- or O2- when stimulated with PMA or 

fMLP in direct contact with the chitosan-based membranes, their activation capacity was retained. 

Additionally, the majority of the kinetic profiles of the response of PMNs to the cell stimulants in 
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the presence of the chitosan-based membranes were different from the controls. The intensity of 

the luminescence peak related to the production of HO- and O2- by cells stimulated with PMA and 

in direct contact with the chitosan-membranes was lower than in the control conditions (PMNs 

only in the presence of the stimulants – Fig. 3.2) and shifted in time. This means that the PMA-

stimulated HO- and O2- production was slightly diminished and delayed in the presence of the 

chitosan-based membranes. An interesting and distinct behaviour was found for the fMLP-

stimulated PMNs in the presence of the developed membranes. While the fMLP-stimulated 

production of O2- was both diminished and delayed in the presence of the three tested materials 

(Figs. 3.3B, 3.4B and 3.5B), the fMLP-stimulated HO- production was only lower and delayed in 

the presence of the chitosan/soy (Fig. 3.4A) and of the hybrid membranes (Fig. 3.5A). In fact 

fMLP-stimulated PMNs presented comparable HO- production kinetic profiles when in the control 

conditions (Fig. 3.2) and in the presence of the chitosan membranes, meaning that the chitosan 

membranes did not induce a lower and delayed response of PMNs (Fig. 3.3A).  

The comparison of the chemiluminescence data from the different materials revealed that the 

PMA-stimulated HO- and O2- production in the presence of the chitosan/soy and hybrid 

membranes did not present significant differences. This similarity was also found for the fMLP-

stimulated HO- production but not for the fMLP-stimulated O2- production in which the hybrid 

membranes induced a less significant effect than the chitosan/soy membranes in comparison to 

the control. Moreover, the chitosan membranes while exerting a more pronounced effect on 

stimulating PMNs over the PMA-stimulated HO- production in comparison with the control 

conditions and with the two other chitosan-based membranes, showed to induce comparable 

fMLP-stimulated HO- production to control and lower effect than the chitosan/soy and hybrid 

membranes also over the PMA and fMLP-stimulated O2- production. 

It was demonstrated that the human neutrophils were successfully stimulated by PMA, with a 

maximum production of HO- between 20 min. and 30 min. and O2- and a maximum production of 

O2- between 55 min. and 65 min. (Fig. 3.2). The stimulation for the secretion of HO- started earlier 

and was slightly stronger than the stimulation for the release of O2-, but the O2--elicited oxidation 

of lucigenin lasted longer. The HO- and O2- maximum production by fMLP-stimulated neutrophils 

was shown to occur between minutes 20 and 50 however, the intensity of those peaks was 

significantly lower when compared with the production of HO- and O2- by PMA-stimulated PMNs. 

McPhail and colleagues [35] demonstrated that modifications in the cytoplasmic membranes of 

neutrophils lead to cells that respond to stimuli such as PMA with normal O2- production, but are 

unable to respond normally to fMLP stimulation. 
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In contact with all the tested chitosan-based membranes, the PMNs were not stimulated for the 

release of HO- and represent a weak stimulus for the production of O2-. Despite the differences 

assessed in the surface of the chitosan-based membranes [32], the cells showed a similar 

behaviour in terms of activation. These observations indicate that the characteristics of those 

surfaces were inert for PMNs, corroborate the already assessed biocompatibility [23]. 

Nonetheless, if the cells were simultaneously, in direct contact with the chitosan-based 

membranes and stimulated with PMA or fMLP, they showed capacity to produce both HO- and 

O2-, meaning that the contact with the chitosan-membranes did not eliminate their capacity to 

respond to those stimuli, although responding differently from the control conditions. This may 

indicate an in vivo anti-inflammatory/anti-oxidant potential of the chitosan-based membranes. In 

fact, the intensity of the chemiluminescence peaks resulting from PMA and fMLP stimulation in 

the presence of the materials is lower than in the control and was shifted in time which indicates a 

decrease in the amount of detected ROS and a delaying in the response of the cells to the 

stimuli. Thus the maximum activation capacity of the PMNs in the presence of the materials was 

either affected or the chitosan-based membranes have the capacity to react with the produced 

ROS, which can explain the lower intensity and consequently the lower amount of ROS detected.  

Furthermore, the alteration in time of the signal measured might be a consequence of the cell-

material interactions that occur at the surface of the different membranes. In fact, the response 

obtained in the presence of the chitosan membranes was different from the observed for the 

Cht/soy and hybrid membranes. The PMNs stimulated with PMA and in contact with chitosan 

membranes, showed an intensity of the chemiluminescence peak resultant from the oxidation of 

luminol by HO-, lower than the observed for the control and for the two other chitosan-based 

membranes. In contrast, chitosan membranes showed to induce comparable fMLP-stimulated 

HO- production to control and higher PMA and fMLP-stimulated O2- production than the other 

materials. 

The in vivo biological acceptance of an implanted biomaterial always involves inflammation and 

wound healing, without which the body would only tolerate the biomaterial instead of get it into a 

functional and long-term association [11]. 

The chitosan/soy blended membranes were obtained by combination of chitosan and soy protein. 

In a previous study [23], the chemical cross-linking of this two components was performed with 

glutaraldehyde in order to increase their interaction reducing the immiscibility [42].  

Despite the fact that the chitosan-based membranes presented a rougher surface and higher 

surface energy and siloxane bonds when comparing to chitosan membrane alone [41], the results 

showed that is not possible to establish a direct correlation with the PMN’s activation in direct 
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contact with the membranes and without chemical stimulants (PMA and fMLP). Nonetheless, they 

still retain their capacity of activation and it is imperative to consider that the stimulation and 

activation of these cells is highly influenced by the type of molecules or mediators adsorbed to the 

surface of materials [43, 44] once they are implanted in vivo. PMNs that are activated mainly in 

response to the wound healing process subsequent to the injury produced by the implantation 

procedure, at least, are not directly activated by the chitosan/soy membranes in vitro, as it was 

proved by the poor activation demonstrated by the production of ROS. Even though, it is possible 

that, in vivo, the response elicited by the same membranes could differ. The present results show 

that the chitosan/soy membranes, in vitro, were not able to stimulate human PMNs neither for the 

release of lysozyme nor for the production of ROS found in the “respiratory burst”. Nonetheless, 

the in vivo activation of PMNs by the implantation of any medical device for tissue engineering 

purposes is required at controlled levels, since their function in wound hound healing precedes 

the adaptive changes if the tissue recovers from injury and returns to normal function. The low in 

vitro stimulation of the PMNs induced by these chitosan/soy-based membranes seems to be a 

good indicator for the development of a normal wound healing process, when implanted in vivo, 

as well as the normal restoration of the tissue function. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: PMA and fMLP-stimulated chemiluminescence profiles for polymorphonuclear neutrophils 

incubated for 107 minutes at 37°C. Superoxide anion generation was detected by the oxidation of 

lucigenin while the generation of the hydroxyl anion was detected after the oxidation of luminol. In the 

tested conditions, PMA was able to stimulate human neutrophils for the production of either O2- or HO-, but 

fMLP was not able to stimulate neutrophils to produce neither O2- nor HO-. The figure shows 

representative data of five separate experiments. Schematic representation of graph A. 
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Figure 3.3: Influence of chitosan membranes on the production of HO- (A) and O2- (B) by 

polymorphonuclear neutrophils with and without PMA and fMLP stimulation. In the presence of the 

chitosan membranes, unstimulated PMNs and fMLP-stimulated cells did not have the ability to produce 

neither O2- nor HO-. Contrarily, PMA-stimulated PMNs in contact with the chitosan membranes produced 

either O2- or HO-. Schematic representation of graph A. 
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Figure 3.4: Influence of chitosan/soy membranes on the production of HO- (A) and O2- (B) by 

polymorphonuclear neutrophils with and without PMA and fMLP stimulation. In the presence of the 

chitosan/soy membranes, unstimulated PMNs and fMLP-stimulated cells did not have the ability to 

produce neither O2- nor HO-. Contrarily, PMA-stimulated PMNs in contact with the chitosan membranes 

produced either O2- or HO-. Schematic representation of graph A. 
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Figure 3.5: Influence of hybrid membranes on the production of HO- (A) and O2- (B) by polymorphonuclear 

neutrophils with and without PMA and fMLP stimulation. In the presence of the TEOS-crosslinked 

chitosan/soy membranes, unstimulated PMNs and fMLP-stimulated cells did not have the ability to 

produce neither O2- nor HO-. Contrarily, PMA-stimulated PMNs in contact with the chitosan membranes 

produced either O2- or HO-. Schematic representation of graph A. 
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Chapter IV  

Chitosan improves the biological performance of soy-based biomaterials 

 

4.1 Abstract 

Soybean protein has been proposed for distinct applications within nutritional, pharmaceutical, 

and cosmetic industries among others. More recently, soy-based biomaterials have also 

demonstrated promising properties for biomedical applications. However, although many reports 

within other fields exist, the inflammatory/immunogenic potential of those materials is still poorly 

understood and therefore can hardly be controlled. On the contrary, chitosan has been well 

explored in the biomedical field, either by itself or combined with synthetic or other natural-based 

polymers. Therefore, the combination of chitosan with soybean protein is foreseen as a suitable 

approach to control the biological behaviour of soy-based biomaterials. Under this context this 

work was designed to try to understand the influence of chitosan in the host response elicited by 

soy-based biomaterials. 

Soybean isolate protein (SI-P) and chitosan (Cht-P) were injected as suspension into the 

intraperitoneal cavity of rats. SI-P induced the recruitment of higher numbers of leukocytes 

compared to the Cht-P during the entire observation period. In this sense, SI-P elicited a 

considerable reaction from the host comparing to the Cht-P, which elicited leukocyte recruitment 

similar to the negative control. 

After subcutaneous implantation of the soybean and denaturated membranes (SI-M and dSI-M) a 

severe host inflammatory reaction was observed. Conversely chitosan/soy-membranes (Cht/Soy-

M) showed the induction of a normal host response after subcutaneous implantation in rats which 

allowed concluding that the addition of chitosan to the soy-based membranes improved their in 

vivo performance. Thus, the presented results assert the improvement of the host response, 

considering inflammatory cells recruitment and overall inflammatory reaction, when chitosan is 

combined to soybean. Together with previous results that reported their promising 

physicochemical characteristics and their inability to activate human PMNs in vitro, the herein 

presented conclusions reinforce the usefulness of the cht/soy-based membranes and justify the 

pursue for a specific application within the biomedical field. 

Key Words: chitosan-based materials; soy-based materials; host response; leukocyte kinetics; in 

vivo inflammatory reaction 
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Griensven, R. L. Reis, Chitosan improves the biological performance of soy-based biomaterials, 

2009. Submitted. 



Chapter IV: Chitosan improves the biological performance of soy-based biomaterials 

 

79 
 

4.2 Introduction 

Soybean protein biomaterials have demonstrated quite interesting properties for bone 

regeneration purposes [1-5], nonetheless few studies [6-8] have in fact investigated its suitability 

within the field. Santin et al. [9] showed that soybean-based biomaterials promote osteoblast-like 

cells’ differentiation in vitro without inducing activation of human macrophages [9]. However, 

additional studies are required to further elucidate the potential of these materials in the 

biomedical field. Moreover, despite the wide use of soy products in nutritional, pharmaceutical, 

cosmetic and many other industries [10] numerous allergic reactions, from skin, gastrointestinal 

and respiratory tract up to anaphylaxis [10, 11] have been attributed to the soy Gly m 4 protein, 

homologous of the major birch pollen allergen, Bet v 1 [11]. 

In contrast to soybean protein, chitosan has been extensively proposed in the biomedical arena 

for bone-[12-16], cartilage-[13, 17, 18] and skin-related [13, 19, 20] applications. The promotion of 

osteoblast proliferation and activity characterized by an up-regulated expression of bone-related 

proteins and mineral rich matrix deposition, directed by chitosan-based structures, has been well 

demonstrated [15, 16]. Concerning cartilage-related applications, the structural similarity of 

chitosan with various glycosaminoglycans (GAGs) found in articular cartilage has burst the 

investigations. Besides playing a role in modulating chondrocyte morphology, differentiation and 

function [18], chitosan was shown to act on the growth of epiphyseal cartilage and wound healing 

of articular cartilage [17]. The successful role of chitosan in the skin wound healing mechanisms 

has been successively confirmed [19-21]. Although it was observed that chitosan does not 

directly accelerate extracellular matrix (ECM) production by fibroblast-like cells [22], it was proven 

that chitosan-based materials have the capacity to promote the production of growth factors, such 

as transforming growth factors (TGF)-β1 and platelet-derived growth factor (PDGF) by 

macrophages [21] which, in turn, induce and/or enhance ECM production [20, 21]. Moreover, 

these materials accelerate the infiltration of polymorphonuclear neutrophils (PMNs) at the early 

stage of wound healing that is followed by the production of collagen by fibroblasts [19]. 

Despite all the promising results in the use of chitosan for the biomedical field, studies from 

different groups [21, 23, 24] have shown controversial results after implanting chitosan-based 

materials. An adverse inflammatory response showing extensive macrophage activation after 

subcutaneous implantation of, either lyophilized chitosan [21] or collagen-chitosan-hydroxyapatite 

hydrogels in rats [23] was detected. Conversely, other authors showed that chitosan hydrogels 

induce mild acute and chronic inflammatory responses, identical to the typical wound healing 

cascade, after subcutaneous [25] and intraperitoneal implantations in rats [24].  
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Nevertheless the significance of chitosan within the biomedical field is unquestionable since the 

observed differences on the response of cells and tissues to the different chitosan-based 

materials may be attributed or influenced by the source of the raw material or by the shape of the 

biomaterial. Chitosan has also been one of the most used materials to improve the biological 

performance of other materials such as metals [26-29] and other biodegradable polymers [7, 16, 

30]. Recent studies demonstrated that neonatal rat calvaria osteoblasts proliferate at higher rates 

on titanium surfaces coated with chitosan [26], which also promote better adhesion of osteoblast-

like cells [27]. In the same way, the hydrophobic surface of poly(L-lactide) (PLLA) matrices coated 

with chitosan displayed a different wetability and enhanced cell affinity [28]. In a rabbit tibia defect 

model, Bumgardner and co-workers [29] showed that the coating of titanium pins with chitosan 

induced minimal inflammatory response and a typical healing sequence of fibrous woven bone 

formation followed by the development of lamellar bone. This is indicative for the role of the 

chitosan-coatings in the osseointegration of orthopaedic implants [29]. When blended with 

synthetic polymers, such as polycaprolactone [16] or poly(butylene succinate) [30], chitosan have 

shown to exert a synergistic effect of on the blend. While the synthetic polyester promoted the 

adhesion of osteoblast-like cells, the presence of chitosan significantly enhanced their 

osteoblastic activity [16, 30]. Chitosan-soy based membranes have also demonstrated improved 

in vitro biological performance in comparison to unblended soy-based materials [7]. Additionally, 

in vitro analysis of the potential of chitosan/soy-based membranes to stimulate immune system 

cells showed that they did not elicit the activation of human polymorphonuclear neutrophils freshly 

isolated from circulating blood [31]. Despite the in vitro promising results, in vivo validation of the 

improved biological behaviour of the soy-based materials after blended with chitosan is needed, 

since the organism includes a very complex immune system. Therefore, the aim of this study was 

to test the influence of chitosan in the host response provoked by soy-based biomaterials. The 

response to the raw materials soybean protein isolate (SI-P) and chitosan (Cht-P) in the form of 

powder was assessed after injection in the intraperitonial cavity of rats. The in vivo reaction to 

soybean protein isolate (SI) and chitosan-soy (Cht/Soy) membranes was compared after 

subcutaneous implantation of the biomaterials. The results from the different models and the 

comparison of the performance of the SI and the chitosan blended membranes allowed to 

conclude about the effect of the chitosan over the in vivo behaviour of soy-based membranes.  
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4.3 Materials and Methods 

4.3.1 Materials 

The tested materials were: powders of i) soybean protein isolate (SI-P) and ii) chitosan (cht-P); 

and membranes of iii) soybean protein isolate (SI-M) and chitosan/soy (Cht/Soy-M). Soybean 

protein isolate (SI) was provided by Loders Crocklaan BV (The Netherlands) and the reagent 

grade chitosan, with a deacetylation degree of 85% and viscosimetric molecular weight of about 

700 KDa, by Sigma (USA). The SI membranes were prepared by solvent casting, according to a 

previously reported procedure [32]. Briefly, SI was suspended in distilled water (10%w/v) at room 

temperature under gentle stirring in order to avoid protein denaturation and consequently, foam 

formation. Glycerol was added to this suspension (1g per 5g of SI), which was then poured into 

moulds, directly in the drying place. The moulds were not moved until complete drying in order to 

assure that the insoluble part of SI was uniformly distributed. Drying was performed at room 

temperature and relative humidity. Alternatively, denaturated SI (dSI) membranes were prepared 

by heating the referred SI suspensions at 100ºC during 2h. After denaturation, the obtained 

viscous solution was casted as described above. Chitosan/soy protein blended membranes (CS) 

(average thickness of 84 µm and 17 mm of diameter) were prepared by solvent casting according 

to a procedure described elsewhere [7]. Briefly, chitosan was dissolved in an aqueous acetic acid 

2% (v/v) solution at a concentration of 4wt%. A soy suspension (1wt%) was prepared by slowly 

dispersing the soy protein powder, under constant stirring, in distilled water with glycerol. After 

adjusting the pH to 8.0±0.3 with 1M sodium hydroxide, the dispersion was heated in a water bath 

at 50ºC for 30 min. The Cht and the SI solutions were mixed at a weight ratio of 75/25% 

chitosan/soy (CS75). After homogenization, the CS75 solution was casted into Petri dishes and 

dried at room temperature for 6 days. The neutralization of the membranes was obtained by 

immersion in 0.1 M sodium hydroxide for about 10 min. Membranes were washed with distilled 

water to remove all traces of alkali and again the membranes were dried at room temperature. 

The materials were sterilized under standard conditions by ethylene oxide [33]. 

4.3.2.Animals 

Twenty four male Wistar Han rats (Charles River, Spain) weighting 420-450g were used for the 

subcutaneous implantation of SI-M and dSI-M, as well as for the intraperitoneal injection of SI-P 

and Cht-P. Four male Sprague-Dawley rats (Himberg breeding institute, Austria) weighting 320-

470g were used for the subcutaneous implantation of the Cht/Soy-M. Animal experimentation 

was performed according to the standard operating procedures required from the national 

authorities and after their respective approval. 
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4.3.4 Intraperitoneal injection of SI and chitosan powders 

Phosphate buffer saline (PBS) (0.01M – Sigma-Aldrich, USA) suspensions of the powders with 

different concentrations (0.1% and 1% SI; and 0.1%, 1% and 2% chitosan) were injected into the 

intraperitoneal (IP) cavity of the rats (1 mL per animal). Three animals per concentration and per 

time period (16 hours, 3 days, 7 days and 15 days) were used. One animal per each 

concentration and per time period was injected with sterile PBS as control. The animals had 

access to food and water ad libitum during the entire observation period. 

4.3.5.Subcutaneous implantation of membranes 

Subcutaneous implantation of the SI membranes 

For the implantation of the SI-M and the dSI-M, the Wistar Han rats were anaesthetized by an 

intraperitoneal injection of 2.5% pentobarbital (CEVA Santé Animale, France). The interscapular 

region was shaved and disinfected with 70% ethanol, a full thickness skin longitudinal incision 

(about 1.5 cm) was performed in each animal and one cranial oriented subcutaneous pocket was 

created by blunt dissection. A membrane (12mm diameter) was positioned into each pocket and 

the incision was carefully sutured. Three animals were used per each time period of implantation 

(3, 7, 15 and 30 days), and per type of membrane. For each time period of implantation a control 

animal, with an empty subcutaneous pocket, was set. The animals were kept in single cages with 

food and water ad libitum during all experimentation time. 

Subcutaneous implantation of the Chit/Soy membranes 

Male Sprague-Dawley rats were anesthetized prior to surgery by intramuscular injection of 90 

mg/kg ketamine hydrochloride (Schoeller Chemie Produkte, Vienna, Austria) and 5 mg/kg 

xylazine hydrochloride (Bayer AG, Leverkussen, Germany). For the subcutaneous implantation of 

the Cht/Soy-M, 2 medial full thickness skin incisions were performed on the dorsum of the rats. 

Two craniolateral oriented pockets per each incision one to the left and one to the right were 

subcutaneously created by blunt dissection, and the membranes were inserted into these pockets 

(4 membranes/animal). The animals were kept in single cages with food and water ad libitum 

during all experimentation time.  

4.3.6 Cytological preparations 

The kinetics of the inflammatory reaction induced by the injected suspensions (made from the 

powders) was assessed by analysis of the peritoneal exudate. The animals were anaesthetized 

with a subcutaneous injection of 2.5% pentobarbital and sacrificed with an intracardial overdose 

of anaesthetic. The abdominal area of each animal was disinfected with 70% ethanol and an 

incision in the abdominal skin and the linea alba was performed, in order to expose the external 

abdominal wall as most as possible to the subsequent lavage. Thirty five mL of sterile PBS 
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solution were injected into the intraperitoneal cavity, and the abdomen was massaged in order to 

recover the inflammatory cells adherent to the abdominal organs and peritoneal cavity. The 

peritoneal exudate was collected in a syringe and stored on ice until further analysis. The total 

number of leukocytes was counted using a haemocytometer and cytospins of 1x106 cells were 

performed by cytocentrifugation (5 minutes at 1000 rpm). Cells were then gently washed in tap 

water and fixed in formaldehyde-ethanol (50/50 (v/v) – formaldehyde 3.7% and absolute ethanol) 

for 45 seconds. The Wright’s staining for blood samples (Hemacolor, Merck, Germany) was 

performed and after being dried, each slide was observed in an optical microscope. A minimum of 

300 cells per sample was counted in different areas of the cytospin and the different types of 

leukocytes distinguished. 

4.3.7 Histological preparations 

The animals with the implanted SI-M, dSI-M and Cht/Soy-M were anaesthetized, at the end of 

each implantation period, respectively with an intraperitoneal injection of 2.5% pentobarbital or 

with an intramuscular injection of 90 mg/kg ketamine hydrochloride and 5 mg/kg xylazine 

hydrochloride, and sacrificed with an intracardial overdose of anaesthetic. The implanted 

membranes, the respective surrounding tissue and the lymph nodes of the rats with Cht/Soy-M 

were explanted and prepared for histological analysis using H&E staining and subsequently 

analyzed using an Axioplan Imager Z1 microscope (Zeiss, Germany). Inflammatory reaction, 

integration of the membranes in the host tissue and in vivo degradation were the assessed 

parameters 

Statistical Analysis 

Mean values and standard deviations are reported for the measurements [34] of the leukocyte 

kinetics. Data was analysed by a single factor ANOVA test and the significance value was set at 

p<0.05. 

 

4.4 Results 

4.4.1 Leukocyte recruitment kinetics  

The intraperitoneal injection of a suspension of SI powders allowed creating, after counting the 

existing sub-populations, the kinetic of leukocyte recruitment into in the intraperitoneal cavity 

subsequent to its injection which is reported in table 4.1.  

The number PMNs, expected to be the firstly recruited cell type, was neglectful in the negative 

control, showing that the injection of the saline solution did not elicit a significant recruitment of 

those cells. Few PMNs were found at 16 hours after the saline solution injection which is 

expected as a normal reaction to the injection. 
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Conversely, PMNs were extensively recruited early after injection of the SI-P suspensions. The 

number of recruited PMNs reached a peak 16 hours post-injection of the 0.1% SI-P suspension 

and decreased to values similar to the control from that time point onward. After injection of the 

higher concentration of SI-P (1%), higher numbers of PMNs were detected up to 3 days while 

consecutively decreasing. 

Concerning the number of PMNs after the injection of the chitosan suspensions, a recruitment 

pattern similar to the negative control was observed at all times. A higher, but not statistically 

significant (p>0.05) number of PMNs was recruited in the presence of the higher concentration of 

Cht-P (2%) 16 hours post-injection. This number decreased afterwards to comparable values to 

the observed for lower concentrations of Cht-P and for the control. 

Macrophages (MO), either tissue resident or recruited from the bloodstream, are the most 

abundant cells into the intraperitoneal cavity at physiological conditions. Therefore, the constant 

number of MO observed for the control along the time was expected and attributed to resident 

cells. Sixteen hours after the injection of the SI-P, the number of detected MO was higher than for 

the negative control (p˃0.05) and associated, together with the PMNs reaction, to an expected 

inflammatory reaction to any implantation procedure. MO recruitment reached a maximum 

between days 3 and 7 (p˃0.05), and between 7 and 14 days (p˃0.05) respectively for 0.1% and 

1% of SI-P. The number of MO started to decrease from that day onward although a significantly 

higher number, compared to the negative control, was detected at day 15 for 1% SI-P.  

Regarding the number of MO present in the peritoneal cavity of the animals injected with the 

three different concentrations of Cht-P, no significant differences (p>0.05) were observed 

between them and in comparison to the negative control at all time points. 

In the context of a chronic inflammation, it is expected that lymphocytes, the type of cells that 

correlates with the onset of the reaction, start to migrate from circulation around the day 7 after 

the inflammatory challenge. Nonetheless, lymphocytes are also resident cells into the peritoneal 

cavity. The presence of lymphocytes was in fact noticed in the negative control at earlier time 

points. An increase (p˃0.05) in the number of lymphocytes was observed after the injection of the 

SI-P. The percentage of SI-P and the time of reaction did not induce significant changes over the 

recruitment kinetics except for 0.1% SI-P at day 3 that presented a value significantly different 

from the control. As for the PMNs and MO, the number of recruited lymphocytes to the peritoneal 

cavity in the animals injected with the three different concentrations of Cht-P, was comparable to 

the negative control at all time points.  

The recruitment of eosinophils and mast cells, which are mostly related with allergic reactions, 

was neglectful after the injection of the saline solution (negative control). The same profile was 
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observed for all of the concentrations of Cht-P and SI-P during the observation time. An exception 

was detected for the 0.1% SI-P solution which induced a maximum of eosinophil and mast cell 

exudation at day 3, although the increase was not statistically significant (p>0.05). From that time 

period onward the number of these cells decreased reaching levels comparable to the other 

tested concentration and the negative control.  
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Table 4.1: Number of leukocytes present in the peritoneal cavity of Wistar Han rats, 16 hours, 3, 7 and 15 days after the injection of the different solutions of chitosan and 

soybean isolate powders. 

 

 

 Neutrophils  
± SD (x105) 

Macrophages  
± SD (x105) 

Lymphocytes  
± SD (x105) 

Eosinophils  
± SD (x105) 

Mast Cells  
± SD (x105) 

Time 16h 3d 7d 15d 16h 3d 7d 15d 16h 3d 7d 15d 16h 3d 7d 15d 16h 3d 7d 15d 

Chitosan 

Powders 

0.1% 13.8 
±4.8 

2.7 
±0.53 

0.0 
±0.0 

0.0 
±0.0 

245 
±125 

194 
±25.0 

134 
±19.4 

176 
±35.5 

17.0 
±15.1 

3.01 
±0.97 

1.36 
0.39 

5.50 
±4.17 

49.9 
±8.48 

22.5 
±1.21 

16.8 
±2.35 

35.1 
±10.6 

6.77 
±5.52 

7.88 
±4.18 

8.49 
±1.03 

8.45 
±4.24 

1% 20.1 
±14.2 

2.43 
±1.70 

0.0 
±0.0 

0,19 
±0.054 

177 
±51.4 

199 
±17.7 

179 
±45.4 

108 
±87.1 

4.73 
±1.14 

4.80 
±1.05 

4.25 
±2.58 

3.26 
±2.80 

23.5 
±9.24 

46.1 
±18.2 

38.1 
±5.71 

5.52 
±2.86 

1.57 
±0.80 

2.31 
±0.93 

1.52 
±1.29 

5.06 
±7.11 

2% 77.0 
±16.3 

3.54 
±4.46 

4.94 
±4.71 

0.0 
±0.0 

323 
±86.1 

220 
±79.8 

235 
±39.6 

85.1 
±1.32 

6.39 
±1.40 

4.01 
±3.85 

7.64 
±4.79 

3.16 
±2.55 

19.7 
±11.1 

39.8 
±19.1 

36.1 
±35.1 

15.9 
±3.58 

0.67 
±1.15 

1.87 
±0.58 

0.0 
±0.0 

22.0 
±1.64 

Soybean 

Powders 

0.1% 207 
±120 

108 
±143 

8.18 
±4.28 

0.0 
±0.0 

664 
±153 

1390 
±459 

1110 
±193 

797 
±150 

71,7 
±47.0 

92.3 
±10.3 

46.5 
±28.8 

18.1 
±3.87 

74.3 
±59.7 

428 
±222 

218 
±55.3 

158 
±62.1 

49.3 
±19.2 

75.9 
±15.7 

53.2 
±46.2 

6.69 
±2.75 

1% 237 
±49.5 

643 
±359 

44.4 
±40.1 

0.0 
±0.0 

914 
±402 

1160 
±223 

1330 
±686 

886 
±38.4 

99 
±36.5 

60.3 
±12.2 

81.7 
±52.3 

84.8 
±17.0 

9.30 
±5.27 

78.5 
±37.5 

75.8 
±25.3 

135 
±66.1 

11.7 
±3.64 

0.0 
±0.0 

0.0 
±0.0 

4.33 
±7.50 

Control 26.2 0.0 0.0 4.03 349 369 385 540 19.3 41.2 6.26 36.2 24.9 122 141 94.6 19.3 25.8 14.1 8.05 

86 
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4.4.2 Histological analysis 

SI-M and dSI-M degradation and tissue inflammatory response 

Animals did not show any surgical complications during the post-operative period. The 

explantation of SI-M, dSI-M and the respective surrounding tissue, was performed at 3, 7, 14 and 

30 days after the subcutaneous implantation and processed for histological analysis. 

Inflammatory reaction, integration of the membranes in the host tissue and in vivo degradation 

were the assessed parameters. 

The obtained histological sections revealed that, after 3 days of implantation, the SI-M maintained 

its integrity (Figs. 4.1A-B) compared to the dSI-M (Figs. 4.1C-D) which lost some of its integrity. 

Additionally, the extension of the observed inflammatory infiltrate was higher in the dSI-M (Figs. 

4.1C-D) than in the SI-M (Figs. 4.1A-B) demonstrating that the dSI-M elicited higher recruitment 

of inflammatory cells in comparison to the SI-M. The histological examination at day 3 of 

implantation revealed the physical separation between the membranes and the adjacent tissue, 

resulting from the processing procedure. However, it was possible to notice a more evident 

detachment of the SI-M (Fig. 4.1A) from the inflammatory infiltrate in contrast to the dSI-M (Fig. 

4.1C) in which attached inflammatory cells were easily identified. A detailed observation of the 

histological sections showed that the inflammatory infiltrate is mainly constituted of PMNs, 

characterized by multi-lobulated nuclei, recruited from circulation in response to either the SI-M 

(Fig. 4.1B) or the dSI-M (Fig. 4.1D). Nonetheless, some mononuclear cells, presenting a smaller 

cytoplasm and a round shaped nucleus, were also observed in both situations. 

After 7 days of the subcutaneous implantation of the SI-M and the dSI-M, the density of the 

inflammatory infiltrate increased (Figs. 4.1E and 4.1G). The degradation of both types of 

membranes was obvious after 7 days of implantation (Figs. 4.1E-H), although more noticeable, 

like at 3 days of implantation, for the dSI-M. Moreover, a network of fibrotic tissue was observable 

surrounding the inflammatory infiltrate, again characterized by the presence of PMNs, which 

seem to be attempting to phagocyte the polymeric material, and mononuclear cells. In the tissue 

surrounding the dSI-M, the inflammatory infiltrate was denser and early signs of oedema 

formation and necrosis with the exteriorization of cell cytoplasm, the presence of cell debris and 

picnotic nucleus were clearly identified (Fig. 4.1H). 

After 14 days of implantation, the expected resolution of a normal inflammatory process was not 

occurring. In the case of the SI-M, the PMNs persisted (Figs. 4.2A-B). Additionally, cell apoptosis 

and necrosis are evident (Fig. 4.2B) and seem to increase in comparison to 7 days of 

implantation. These observations were even more evident for the dSI-M; the density of the 

inflammatory infiltrate was higher and the signs of necrosis were even clearer (Figs. 4.2C-D). At 
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this stage, the degradation of the dSI-M was also more pronounced, both compared to the SI-M 

and to the first 7 days of implantation of the dSI-M.  

After 30 days of subcutaneous implantation of the SI-M and dSI-M, the degradation of the 

membranes, the oedema and necrosis evidently increased more in comparison with the previous 

implantation periods (Figs. 4.2E-H). 

Cht/Soy membranes degradation and tissue inflammatory response 

The Cht/Soy-M were subcutaneously implanted in rats for 7 and 14 days. During the post-

implantation period no signals of systemic or regional surgical complications were detected for 

any of the animals. The local and systemic host responses to the implanted materials were 

analysed after histological processing of the explants comprising the implanted Cht/Soy-M and 

respective surrounding tissue, and of the axillary and inguinal lymph nodes. 

Local reaction to the Cht/Soy-M after 7 days of implantation comprised an inflammatory infiltrate 

formed by recruited PMNs (Fig. 4.3A). Additionally, some matrix started to be deposited around 

resident and inflammatory cells present in the subcutaneous tissue. Furthermore, blood vessels 

and adipocytes were also observed in the surroundings of the implantation site (Fig. 4.3B). 

Concerning the systemic host response, the analysis of the neighbouring lymph nodes revealed 

its reactive state characterised by a higher cell density of the germinal centres compared to the 

medullar region (Fig. 4.3C). 

After 14 days of implantation, the progress of the inflammatory reaction was noticed; the 

inflammatory infiltrate was concentrated a few microns from the membrane and the newly 

developed vascularisation of connective tissue was evident (Figs. 4.3D-E). The presence of 

mononuclear cells that typically appear 2 weeks after the implantation of the material, and the 

absence of persistent PMNs were detected. Moreover foreign body giant cells (Fig. 4.3E) were 

not observed. Similarly to what was observed for day 7 of implantation, the neighbouring lymph 

nodes showed comparable signs of reactivity (Fig. 4.3F).  
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Figure 4.1: Microscopic images obtained from the explanted Soy Isolate Protein Membrane (SI

denaturated SI-M (dSI-M) and surrounding tissue, subcutaneously implanted for 3 and 7 days in rats.
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Figure 4.1: Microscopic images obtained from the explanted Soy Isolate Protein Membrane (SI

M) and surrounding tissue, subcutaneously implanted for 3 and 7 days in rats.
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Figure 4.1: Microscopic images obtained from the explanted Soy Isolate Protein Membrane (SI-M) and 

M) and surrounding tissue, subcutaneously implanted for 3 and 7 days in rats. 
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Figure 4.2: Microscopic images obtained from the explanted Soy Isolate Protein Membrane (SI

denaturated SI-M (dSI-M) and surrounding tissue, subcutaneously implanted for 14 and 30 days in rats.
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Figure 4.2: Microscopic images obtained from the explanted Soy Isolate Protein Membrane (SI

M) and surrounding tissue, subcutaneously implanted for 14 and 30 days in rats.
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Figure 4.2: Microscopic images obtained from the explanted Soy Isolate Protein Membrane (SI-M) and 

M) and surrounding tissue, subcutaneously implanted for 14 and 30 days in rats. 
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Figure 4.3: Microscopic images obtained from the explanted Chitosan/Soy

surrounding tissue, subcutaneously implanted for 7 and 14 days in rats, as 
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4.5 Discussion 

The combination of one of the most used natural materials, chitosan 

promising one, soy [5, 36], has recently shown to possess very interesting features 

that should be explored within the context of potential biomedical applications. Following these 

recent findings, and considering that there is a significant number of reports in the literature that 

highlight soy’s inflammatory and allergic character 

of those materials was missing. Therefore, this

reaction of these materials. 

One of the most relevant features of biodegradable biomaterials that determine a successful 

performance refers to its degradation rate and subsequent degradation products. The direct

reaction to these as well as the inability of the host to deal with those products has been 

frequently reported as the major cause of implant failure 
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Figure 4.3: Microscopic images obtained from the explanted Chitosan/Soy-based Membranes and 

surrounding tissue, subcutaneously implanted for 7 and 14 days in rats, as well as the nearby lymph 

The combination of one of the most used natural materials, chitosan [6, 13, 14, 35]

, has recently shown to possess very interesting features 

that should be explored within the context of potential biomedical applications. Following these 

recent findings, and considering that there is a significant number of reports in the literature that 

highlight soy’s inflammatory and allergic character [11, 37], the evaluation of the 

of those materials was missing. Therefore, this study aimed to investigate the 

One of the most relevant features of biodegradable biomaterials that determine a successful 

performance refers to its degradation rate and subsequent degradation products. The direct

reaction to these as well as the inability of the host to deal with those products has been 

frequently reported as the major cause of implant failure [38]. Thus, the testing of chitosan and 
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soy materials was considered relevant for a first assessment of the inflammatory and allergic 

potential of the materials in study. The host tissue response to both chitosan and soy 

suspensions was monitored by investigating the intraperitoneal leukocyte kinetics at 4 different 

periods of time (3, 7, 14 and 30 days). The basal level of reaction, induced by the procedure, was 

established with the injection of a saline solution and showed the typical population of 

inflammatory cells present in the rat peritoneal cavity in a physiological condition of minor trauma 

due to injection [39]. Macrophages, the intraperitoneal tissues resident cells, were the most 

evident type of cells detected. Although not at significant numbers, lymphocytes can also be 

present in the tissues [40], which justify the obtained values for the control.  

Concerning leukocyte recruitment by the injection of soybean isolate protein and chitosan as 

suspensions from the powders into the intraperitoneal cavity of rats, SI-P elicited the recruitment 

of higher cell numbers compared to Cht-P at all times studied. In this sense, SI-P was considered 

more reactive to the host comparing to the Cht-P, which independently of the concentration 

elicited leukocyte recruitment comparable to the negative control. Although it would be expected 

that a direct effect exists that increasing the concentration of the suspension results in an 

increase in intensity of the provoked reaction. This was not observed for the cht-P which is in 

consonance with previous studies with chitosan-based materials, showing a typical inflammatory 

reaction induced by its implantation [41] . 

The observed host response also did not seem to directly correlate with the different 

concentrations of the tested SI-P. Soybean isolate protein induced a persistent recruitment of all 

inflammatory cell types in comparison with the chitosan powders and negative control, since 

mononuclear cells (macrophages and lymphocytes), the hallmark of a chronic inflammation, were 

extensively present at the latter stage of reaction (14 days). These results seem to be in 

accordance with the observed reaction after the subcutaneous implantation of the membranes. 

Despite the absence of physiologic signs of inflammation or infection, the histological analysis of 

the explants revealed a severe host inflammatory reaction. Comparing the SI-M and the dSI-M, it 

was possible to observe that the reaction to dSI-M was more intense. The extension of the 

inflammatory infiltrate was representative of an acute persistent reaction characterised by the 

presence of PMNs at longer implantation periods (14 and 30 days) that undergo frustrated 

phagocytosis. The higher degradation rate of the dSI-M, in comparison to SI-M and subsequent 

presence of smaller fragments of the membrane might be responsible for the stronger reaction 

since a higher surface area is available for PMNs to respond to. The metabolites secreted by the 

PMNs in this situation lead to the decrease of the physiological pH and to the apoptosis and 

necrosis of neighbouring cells, evident at later stages of implantation. Other studies [21, 42, 43] 
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suggested that surface properties such as hydrophilicity and surface charge determine 

inflammatory cells apoptosis and necrosis. Nevertheless, a typical foreign body reaction [44] was 

not observed. 

The results of the leukocyte kinetics, where the SI-P induced a severe and persistent recruitment 

of inflammatory cells in the intraperitoneal cavity of the rats after injection, were indicative of the 

expected subcutaneous response and could be extrapolated from previous reports of 

inflammation caused by soy products [11, 37].  

The addition of chitosan to the soy-based membranes improved, as expected, the host response 

which showed the features of a typical inflammatory response to implanted materials [19-21, 24]. 

Moreover, the integration of the membranes within the surrounding tissue was revealed by the 

presence of matrix [38] after 2 weeks of implantation. These results are in agreement with the 

results of other researchers, reporting the in vitro inhibition of anti-inflammatory cytokines by 

chitosan, such as IL-6, IL-8 and TNF-α [45, 46], which tend to prolong the acute inflammatory 

response, instead of allowing the host to progress to the resolution of inflammation [44]. The non-

activated state of the lymph nodes after Cht/Soy-M implantation indicates that the implanted 

materials were not able to induce a more systemic host reaction and no debris or molecules of 

the materials were transported through circulation to induce a remote response of the related 

lymphatic tissues.  

The presented results assert the improvement of the host response, considering inflammatory 

cells recruitment and overall of the inflammatory reaction, when chitosan is added to soybean. 

Having in consideration previous indications on the behaviour of PMNs after stimulation with 

Cht/Soy-based membranes [31], the present results may assert the influence of chitosan on 

masking specific soy reactive epitopes or even on suppressing leukocyte activation, namely 

PMNs. The Cht/Soy-based membranes showed the induction of a normal inflammatory reaction 

and the features characterizing this reaction are crucial for the integration of the implanted 

material, as well as for the ongoing process of wound healing and tissue regeneration. Together 

with previous results that reported their promising physicochemical characteristics and their 

inability to activate human PMNs in vitro [31], the herein presented conclusions reinforce the 

usefulness of the cht/soy-based membranes and justify the pursue for a specific application within 

the biomedical field. 
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Chapter V 

In vivo performance of chitosan/soy-based membranes as wound dressing devices for 

acute skin wounds 

 

5.1 Abstract 

Wound management represents a major clinical challenge when it comes to enhance healing and 

control pain. Thus, the selection of an appropriate dressing plays an important role both in the 

complete recovery (regeneration) and in the aesthetic appearance of the regenerated tissue. A 

wide range of dressings and bandages, adaptable to various types of wounds, are nowadays 

available in the wound care market. Even though, the increasing interest in the use of natural-

based products for biomedicine applications is leading the progress of the field. 

In this work, a rat wound dressing model of partial-thickness skin wounds was used to assess the 

suitability of newly developed chitosan/soy-based (Cht/Soy) membranes as wound dressing 

material. Healing and tissue regeneration of non-dressed, chitosan/soy membranes and 

Epigard® dressed wounds were followed macroscopically and histologically for 1 and 2 weeks. 

Chitosan/soy membranes were found to perform better as compared to the controls, promoting 

not only a faster, but most importantly, functional regeneration of the chitosan/soy dressed 

wounds. The re-epithelisation, already observed one week after wounding, was followed by the 

cornification of the outermost epidermal layer indicating a functional recovery of the excised 

tissue. 

These new Cht/Soy-based membranes possess the desired features in terms of healing 

stimulation, ease of handling and final aesthetic appearance which are considered to be useful 

features as wound dressing material. Therefore, these Cht/Soy-based membranes include one of 

the most promising natural-based materials in the skin healing and regeneration field. 
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*This chapter is based on the following publication: 

 

T. C. Santos, B. Höring, K. Reise, A. P. Marques, S. S. Silva, J. M. Oliveira, J. F. Mano, A. G. 

Castro, R. L. Reis, M. van Griensven, In vivo performance of chitosan/soy-based membranes as 

wound dressing devices for acute skin wounds. 2009. Submitted. 
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5.2 Introduction 

Tissue trauma and pain are two main considerations of wound management. Thus, the 

appropriate dressing selection plays an important role both in the complete regeneration and in 

the aesthetic appearance of the injured tissue [1]. A wide range of dressings and bandages, 

adaptable to various types of wounds, are nowadays available in the wound care market and 

many currently applied in the clinics. The traditional wound dressing that simply covered and 

protected the wound [2, 3] were replaced by alternatives that may allow control wound moist [4-7] 

and more recently to dressings with an (bio-)active role in the healing environment [8, 9]. 

Nonetheless, further developments that can facilitate the healing process or address issues such 

as the control of the chemical environment and bacterial infection are still required and desired. In 

fact, most of the existing products need to be changed every few days after their application and, 

in some cases, there is the need to substitute the material to maintain/accelerate the ongoing 

healing process [10]. 

Indiscriminately, synthetic [11-14], natural [8, 15, 16] or biological materials [10, 17, 18] have 

been presented along the years as the key elements for controlling/modulating the healing 

mechanisms and the outcomes of wound healing upon dressing [10]. Among the recently 

proposed natural-based materials, such as collagen [2, 9, 19, 20], chitosan [21-25] and silk [26, 

27] occupy a central. These have been proposed as alternatives to the commercially available 

products for wound dressing, as they might present improved performance.  

The positive impact of chitosan, a deacetylated derivative from chitin, concerning the healing 

mechanisms, including the inflammatory process, is well documented. Chitosan powders showed 

to enhance healing and re-epithelialisation of full thickness skin wound in rats [28]. In a clinical 

trial, Azab et al. [29] have shown a positive effect of chitosan both on the re-epithelialisation and 

regeneration of the granular layer of the skin where chitosan-dressed wounds healed faster as 

compared to controls. This data is in agreement with other studies demonstrating that chitosan 

induce the migration of polymorphonuclear neutrophils (PMN) at the early stage of wound 

healing, when treating open skin wounds in dogs, enhancing the formation of granulation tissue 

and production of collagen by fibroblasts [30]. Furthermore a reduction of the influx of activated 

tissue macrophages, which in turn diminishes the subsequent events such as angiogenesis, 

fibroplasia, and connective tissue deposition was also attributed to chitosan [31]. Chitosan also 

displays haemostatic properties, preventing bleeding [31], as well as antibacterial activity when 

applied in skin wounds [23, 25, 32].  

Chitosan/Soy membranes were previously proposed for biomedical applications based on the 

observations of both in vitro capacity to enhance either the proliferation of fibroblasts [33] and the 
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impaired ability to activate polymorphonuclear neutrophils [34], and normal host immune reaction 

after subcutaneous and intraperitoneal implantation in rats [35]. Other important features of these 

chitosan/soy membranes that are critical for wound dressings are its practical manipulation and 

its transparency. In this context and on the worldwide recognized potential of chitosan for skin 

wounds regeneration, the aim of this study was to evaluate the suitability of the newly developed 

chitosan/soy-based membranes as dressings for partial thickness skin wounds. Among the many 

different animal models to study wound healing and skin regeneration, excision of skins portions 

is the model widely used [8, 17, 23, 36-41]. Despite the different healing capacities between rats 

and humans, a wound dressing rat model of partial-thickness skin wound, under impaired healing 

conditions, was used to assess the suitability of the chitosan/soy membranes to promote wound 

healing. Comparatively, Epigard®, a clinically accepted wound dresser was used as control. 

 

5.3 Materials and Methods 

5.3.1 Materials 

Chitosan (Cht), with a deacetylation degree of about 85% was purchased from Sigma (Germany) 

and the soy protein isolate (SI) was provided by Loders Crocklaan (The Netherlands). All other 

reagents were analytical grade and used as received. Chitosan/soy protein blended membranes 

(average thickness of 84 µm and 17mm of diameter) were prepared by solvent casting according 

to a procedure described elsewhere [33]. Briefly, chitosan was dissolved in an aqueous acetic 

acid 2% (v/v) solution at a concentration of 4wt%. A soy suspension (1wt%) was prepared by 

slowly dispersing the soy protein powder, under constant stirring, in distilled water with glycerol. 

After adjusting the pH to 8.0±0.3 with 1M sodium hydroxide, the dispersion was heated in a water 

bath at 50ºC for 30 min. The Cht and the SI solutions were mixed at a weight ratio of 75/25% 

chitosan/soy (CS75). After homogenization, the CS75 solution was casted into Petri dishes and 

dried at room temperature for 6 days. The neutralization of the membranes was obtained by 

immersion in 0.1 M sodium hydroxide for about 10 min. Membranes were washed with distilled 

water to remove all traces of alkali and again the membranes were dried at room temperature. 

The materials were sterilized under standard conditions under ethylene oxide atmosphere [42]. 

 

5.3.2 Animals 

Twenty male Sprague Dawley rats weighting between 230g and 280g were used for the study. 

Three groups were investigated: membranes (wound directly covered with the Cht/Soy-based 

membranes); positive control (wound directly covered with Epigard® - Biovision GmbH, 

Germany); and a negative control (no direct coverage of the wound). Epigard® is composed of a 
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non-textile outer layer of polytetrafluorethylene and an inner layer of soft elastic polyurethane that 

forms an open matrix to which adsorbs the wound exudate from the wound bed. This dressing 

was chosen as positive control because it is extensively used in the clinical practice as a short 

term wound dressing [12]. 

Each animal was anaesthetized with an intramuscular injection of 90 mg/kg of ketamine 

combined with 5 mg/kg xylazine after induction with 3-3.5% isofluorane and 7 L/minute of air for 

2-3 minutes. After shaving the skin, the back of the animals was disinfected and 2 paravertebral 

wounds (17 mm in diameter) were created by excision, leaving the skin smooth muscle layer 

(panniculus carnosus) intact. The test conditions were randomly distributed among the animals. 

After dressing (except the negative control), the wounds were protected with Bactigras® and then 

covered with Opsite Flexigrid®. Bactigras® is a paraffin gauze dressing containing 0.5% of 

chlorhexidine acetate; being soothing and non-adhesive it allows the wound to drain freely into an 

absorbent secondary dressing [29]. Opsite Flexigrid®, a vapour permeable adhesive film dressing 

which is the standard in moist wound healing [43] was used as a secondary dressing. The whole 

abdomen of each animal was protected with stretching bandages to prevent the removal of the 

whole set of dressings by scratching and biting (Fig. 5.1). At days 0 (surgery day) and 7, 

methylprednisolone acetate (Depo-Medrol®, Pfizer) was subcutaneously injected (20 mg/kg BW) 

to impair wound healing [44] and inhibit hair growth. 

The animals were kept separately and received daily analgesia with metamizole sodium (200µg/g 

BW) and sedation with diazepam (2.5 mg/125ml water) in drinking water. 

The bandages were changed every 3-4 days. Macroscopic analysis of the wounds was carried 

out at days 3, 7 and 14 and the images taken used for the planimetric evaluation of the healing 

process. The evaluation was performed with the LUCIA software by two independent researchers 

blinded to the experimental condition.  

 

 

 

Figure 5.1: Macroscopic appearance of the wounds created by skin excision and before dressing (A). Set 

of dressings and bandages used to treat the animals (B). 
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At each end time point (1 and 2 weeks), the animals were anaesthetized with isofluorane and 

then euthanized by and intracardial overdose of ketamin/xylazine. The wound area and the 

surrounding healthy skin were explanted. Central wound cross-sections were fixed for histological 

analysis, in 3.7% formalin, and then paraffin embedded, sectioned and stained according to a 

routine haematoxylin and eosin (HE) protocol.  

The histological samples were analysed using an Axioplan Imager Z1 microscope (Zeiss, 

Germany). The histological analysis also included the measurement of the length of the wound, 

which permitted to establish a correlation with the planimetric assessment of the wound areas. 

The length of the wounds was measured, using the standard microscope scale, after the 

composition of multiple standardized histological pictures including the full wounded area and the 

healthy margins. 

 

5.3.3 Statistical analysis 

Data from the planimetry and from the wound length measurements [45] were analysed by a 

single factor Anova test and the significance value was set at p<0.05. 

 

5.4 Results 

5.5.1 Macroscopic analysis 

Despite some scratching of the secondary bandages after 7 days of dressing no signs of infection 

were detected for all the test groups and dressing times (Fig. 5.2-A). 

The macroscopic characterization of the wounds during the observation period was based on the 

planimetric analysis of wound area. The wound area significantly decreased from the operation 

day (OpD) until the final excision time point (14 days) in all the conditions, which is an indication 

of increasing epithelialisation and replacement of the wounded tissue (Figs. 5.2-A and B). A 

significant and consecutive reduction of the wound area was also observed for both negative and 

positive controls from time point to time point. In respect to the Cht/Soy membrane-dressed 

wounds, a significantly smaller wounded area was observed at day 3 as compared to OpD (Figs. 

5.2-A and B). Non significant changes were observed from day 3 to day 7. By comparing the 

results from day 7 to day 14, it was possible to observe a significant reduction of the wound area 

(Figs. 5.2-A and B).  

At day 3 after wounding and dressing, clear macroscopic differences between the groups were 

observed (Fig. 5.2-A). The Cht/Soy membrane-dressed wounds showed a significant infiltration of 

granulation tissue that allowed membrane lifting and wound observation. Conversely, the non-

dressed wounds (negative control) showed bleeding, which is a sign of impaired healing. 
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Epigard® (positive control) was completely adhered to the wound bed making it impossible to 

remove without wounding again (Fig. 5.2-A). The planimetric analysis revealed that the area of 

the negative control and the Cht/Soy membrane-dressed wounds were not significantly different 

(p˃0.05) in contrast to that using Epigard® (Fig. 5.2-B). By comparing the negative and the 

positive controls, the wounded area of the negative control was significantly smaller (p˂0.05) 

(Fig. 5.2-B). The higher wound dimensions observed for the Epigard®, only statistically different 

in comparison to the negative control (p<0.05) (Fig. 5.2-B), can be attributed to the adhesion of 

the Epigard® to the wound bed that did not permit its removal. In the same manner, the wounds 

dressed with the Cht/Soy membrane presented a reduced area compared to the positive controls 

(p˂0.05) (Fig. 5.2-B). 

After 7 days of dressing, in the Cht/Soy membranes-dressed wounds the granulation tissue 

started to be replaced by new epithelial tissue and the membranes were easily lifted from the 

wound bed. An improved healing, with new epithelial tissue was observed for the Cht/Soy 

membrane-covered wounds, compared to the negative control where some granulation tissue 

was still present (Fig. 5.2-A). Additionally, no bleeding was observed after the removal of the 

Cht/Soy membranes or negative control bandages. Moreover, the limits of the wounds dressed 

with the Cht/Soy membranes were smoother than the observed for the negative and positive 

controls (Fig. 5.2-A). Despite the smaller wound area of the Cht/Soy membrane group, the 

planimetric evaluation did not reveal significant differences as compared to both negative and 

positive controls (p>0.05) (Fig. 5.2-B).  

Comparing the contour and dimensions of the wounds at day 14 (Figs. 5.2-A and B), it was 

evident that the re-epithelialisation and healing was more efficient on the wounds dressed with 

the cht/soy-based membranes. As observed for the membrane-dressed wounds, the negative 

control did not bleed at the removal of the bandages but some granulation tissue was still present 

on the wound bed (Fig. 5.2-A). In the case of the wounds dressed with Epigard® (positive 

control), the material completely adhere to the wound bed, impeding the new epidermis. In fact, in 

an attempt to remove it, the wound started to bleed extensively (Fig. 5.2-A). Compared to the 

negative and positive controls, the wound dressed with the Cht/Soy membranes showed thinner 

margins with an almost complete healing and regeneration of all the layers of the excised 

epidermis (Fig. 5.2-A). Thus, at the last end point of the experiment the Epigard®-dressed 

wounds showed a significantly delayed wound closure, as compared to the other test groups (Fig. 

5.2-A). A smaller wounded area was observed for the chit/soy membrane group indicating a 

significantly faster healing of the wound (Fig. 5.2-B).  
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Figure 5.2: Representative images of the macroscopic aspect of the excisional wounds at the Operation 

Day (OpD) and subsequent healing at days 3, 7 and 14 after dressing with the chitosan/soy-based 

membranes, and in comparison with the negative and positive controls (A). Follow up of the wound area 

determined by planimetric analysis (B). 

 

5.5.2 Histological analysis  

After each time point the wounds and surrounding healthy skin were excised, together with the 

attached dressing in the case of the positive controls, and prepared for histological analysis. As 

during the process of sectioning and staining, the adherent Epigard® did not detach from the 

wound bed, the analysis of the explants included, in this case, its integration with the regenerating 

tissue.  

A 
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One week after dressing, the Cht/Soy-based membranes seemed to enhance the formation of 

granulation tissue, in comparison to the negative control (undressed wounds) (Fig. 5.3-A). 

Furthermore, the margins of the Cht/Soy membrane-dressed wounds presented a continuity of 

the regenerating tissue that was not observed in the wound margins of the positive and negative 

controls (Figs. 5.3-A, B and C). At this stage of healing, it was already possible to identify some 

stratification of the tissue in the membrane-dressed wounds that increased in complexity from the 

healthy skin to the centre of the wound (Figs. 5.3-A and 5.4-A). These features were not 

detectable either in the positive (Fig. 5.3-B) or in the negative controls (Fig. 5.3-C). A 

disorganised mesh of cells, including a large amount of inflammatory cells, some fibroblasts and 

collagen fibres were observed in these both groups. Furthermore, while some necrosis was 

detected in the non-dressed wounds (negative controls) (Figs. 5.3-C and 5.4-C), in the Epigard® 

dressed wounds, no necrosis was observed. In fact, the material adhered to the wound bed 

forming an intimate network composed by the polymer matrix and the regenerating cells. This 

network started to vascularise, which is an indication of good integration of the material into the 

wound bed (Figs.3-D and 5.4-D). During the first week of healing the formation of foreign body 

giant cells was not detected in all groups.  

At the second week of dressing, the healing of the wounds covered by the Cht/Soy membranes is 

enhanced as compared to the negative and positive controls. The wounds decreased in size, the 

margins were thinner and the granulation tissue previously observed was replaced by a more 

stratified regenerated epidermis (Fig. 5.3-D). Cornification of the outermost epidermal layer, 

although still near the margin of the wound was observed (Figs. 5.3-D and 5.4-B), demonstrating 

clear signs of re-epithelialisation. The negative controls (non-dressed wounds) showed a severe 

macerating effect of the epidermis translated in extensive necrosis of the tissue (Fig. 5.3-F). In 

respect to Epigard®-dressed wounds, the matrix network detected at the first week of healing 

was still present and a higher colonization of cells was observed (Fig. 5.3-E). Underneath the 

network, a significant layer of muscle and collagen fibres was observed (Fig. 5.3-E).  

The microscopic measurement of the obtained histological samples among the groups showed 

not significant statistical differences (p>0.05) in the length of the wounds after 1 and 2 weeks 

(Fig. 5.5). At the first week of healing the wounds dressed with the Cht/Soy membranes showed a 

significant decrease in length, as compared either with the negative or the positive controls 

(p<0.05) (Fig. 5.5). Conversely, both controls did not significantly differ in the length of the 

wounds (p>0.05) (Fig. 5.5). Two weeks after healing, the positive and negative controls showed 

to have significantly different wound lengths (p<0.05) (Fig. 5.5). On the contrary, the Cht/Soy 



 

 

membranes-dressed wounds had lengths comparable to the negative and positive controls 

(p>0.05) (Fig.5). 
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Figure 5.3: Representative composition of the histological micrographs of the wounded skin 1 (A,B,C) and 

2 (D,E,F) weeks after dressing with the Cht/Soy Membrane (A, D), the Eppigard® (positive control) (B,E) 

and left undressed (negative control) (C,F). 
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3: Representative composition of the histological micrographs of the wounded skin 1 (A,B,C) and 

2 (D,E,F) weeks after dressing with the Cht/Soy Membrane (A, D), the Eppigard® (positive control) (B,E) 

and left undressed (negative control) (C,F).  
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3: Representative composition of the histological micrographs of the wounded skin 1 (A,B,C) and 

2 (D,E,F) weeks after dressing with the Cht/Soy Membrane (A, D), the Eppigard® (positive control) (B,E) 
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Figure 5.4: Histological micrographs of the wound bed representing the stratification of the regenerated 

tissue (A) and the epidermal cornification (→) (B) respectively one and two weeks after dressing with the 

Cht/Soy Membrane. In contrast necrotic tissue (→) was observed in the undressed wound (negative 

control) (C). In the positive control it was perceived the integration of the Eppigard® (→) and the formation 

of blood vessels (      ) one week onward after wounding (D).   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5: Representation of the length of the wound one and two weeks after dressing with the Cht/Soy 

Membrane (Membrane), the Eppigard® (Positive) and undressed (Negative). Measurements were 

obtained from the histological micrographs of the wounded region of the skin. * - differences statistically 

significant (p<0.05). 

 

 

5.5 Discussion 

Excisional wound animal models are the most frequently used models to investigate the 

performance of skin wound dressings [46]. These types of wounds are useful to assess re-

epithelialisation after implantation of different devices when considerable volume of skin is 

removed. Such examples are wound dressings, topical formulations and growth factors [46]. 

Many research groups have reported the successful use of different types of chitosan-based 

materials for wound dressing applications [29, 43, 47-49]. Following some of those reports and 

previous knowledge on the behaviour of cht/soy-based membranes [34], a wound dressing rat 

model of partial-thickness skin wound was used to assess the suitability of these membranes as 

wound dressings. It is well known that (young) rodents possess a very fast and easy healing 

capacity thus, in such in vivo models, it is mandatory to simulate human condition of wound 

healing, since humans have an impaired healing compared with rodents [50]. This study 

demonstrates that the Cht/Soy membranes, under impaired healing conditions as induced by 

* 

* 

* 
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corticosteroid treatment, are suitable wound dressings as they permit the progress of a normal 

healing path and a faster regeneration of the excised epidermis as compared to an undressed 

wound (negative control). The presence of granulation tissue at earlier stages of healing was 

representative of an accelerated tissue reaction [51]. In contrast, an early inflammatory stage and 

bleeding were observed in the negative control. In fact, for both negative and positive controls, a 

disorganised mesh of cells, a large amount of inflammatory cells, some fibroblasts and collagen 

fibres were observed at the first week of healing. At this stage, the inflammation subsequent to 

wounding should be resolved and the expected tissue would be granulation tissue [51] as 

evidenced in the Cht/Soy membrane-dressed wounds (Figs. 5.3-A, B and C).  

In partially-thickness wounds the large amount of granulation tissue formed results in wound 

contraction and re-epithelialisation which closes the wounded area allowing the regeneration of 

the epidermis with its different layers and annexes [39, 46]. Furthermore, as the subcutaneous 

tissue with the portion of the panniculus carnosus muscle in the backs of the animals is left intact 

[50], the re-epithelialisation of the wound will start not only from the margins of the wound 

containing healthy and intact skin, but also from the wound bed [39, 50]. After one week, in the 

wounds dressed with the Cht/Soy membrane, some stratification of the wound was already 

detected that increased in complexity from the healthy skin to the centre of the wound. The 

smaller wound area and the thinner margins, with an almost complete healing and regeneration 

of all the layers of the excised epidermis after 14 days of dressing with the Cht/Soy membrane, 

confirmed the normal progress of re-epithelialisation and a better healing (Figs. 5.3-D, E and F).  

The fact that the Cht/Soy membrane was completely loose on the wound seemed to facilitate the 

spatial and increased progression of the newly formed epithelium. Therefore, these membranes 

appear not only to be able to regulate the wound moist, which at extreme levels would impair 

epidermis regeneration, but also to provide the adequate coverage that does not physically 

constrain the formation of new tissue. 

Despite the decreased area of the undressed wounds, severe necrosis and no signs of re-

epithelialisation were detected. According to a previous report [34], polymorphonuclear 

neutrophils (PMNs) did not secrete reactive oxygen species (ROS) after direct contact with 

Cht/Soy membranes. Furthermore, the membranes exerted an anti-inflammatory effect by 

inhibiting the PMNs to produce ROS when stimulated with phorbol 12-myristate 13-acetate (PMA) 

or formyl-methionyl-leucyl-phenylalanine (fMLP) [34]. Bearing this in mind, it is possible to 

consider that the inflammatory cells present at the wound bed of undressed wounds are secreting 

ROS. These can be responsible for destroying the surrounding cells and tissues, which may 

explain the observed necrosis at the wound bed. On the contrary, Cht/Soy membranes exerted 
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their anti-inflammatory potential by inhibiting the activation of the inflammatory cells and avoiding 

a toxic environment in the wound bed, which lead to normal wound healing process and tissue 

regeneration. Moreover, the observed necrosis at the wound bed of the negative controls may be 

explained as a consequence of the lack of stimulation of the wound bed tissue to regenerate. In 

fact it is well known that, as the growth from the wound margins is slower, the absence of 

nutrients in the wound bed leads to cell death. 

In this study, an unexpected reaction, independently of the time periods tested, was observed for 

the Epigard® since its clinical use as a wound dressing did not predict the observed impaired 

regeneration. Conversely to the Cht/Soy membranes that were easily detached from the wounds 

without additional trauma and without removing the granular tissue, the Epigard® integrated 

within the wound tissue thus delaying the resolution of the inflammatory process. This behaviour 

can be explained by the different healing rates between rats and humans; the faster metabolism 

of rats, although in impaired wound conditions, lead to an exacerbated reaction thus, leading to 

the formation of a vascularised network of cell-embedded matrix. The continued presence of the 

Epigard® within the wound for the longer time period showed that the host is still combating the 

foreign body and thus is able to proceed with the re-epithelisation and the closure of the wound. 

Nevertheless, a good integration within the wound bed and with the regenerating tissue was 

observed. 

However, further studies of wound dressing, including the cellular and molecular mechanisms 

involved in skin wound healing, as well as studies in advanced wound healing models, such as 

excisional skin wounds in pigs could improve the knowledge on these cht/soy-based membranes.   

 

5.6 Conclusions 

The present work allows to conclude that the newly developed cht/soy-based membranes 

produced by solvent casting methodology, that had proven to promote low in vitro activation of 

human PMNs isolated from circulating blood, decrease the healing time period of partial-

thickness skin wounds in rats. Moreover, these cht/soy-based membranes showed an enhanced 

performance as compared to the negative and positive controls, inducing re-epithelialisation. The 

new cht/soy-based membranes can be considered for further studies of wound dressing, 

including the cellular and molecular mechanisms involved in skin wound healing, as well as for 

studies in advanced wound healing models, such as excisional skin wounds in pigs.  
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Chapter VI 

In vivo short and long term host reaction to starch-based scaffolds 

 

 

6.1 Abstract  

The implantation of biomaterials implies a host response to a foreign body that depends on the 

host and the implanted material. The aim of this study was to compare the inflammatory response 

induced by the implantation of starch-based scaffolds in two implantation rat models, 

subcutaneous (SC) and intramuscular (IM). Two methodologies, wet spinning (WS) and fibre 

bonding (FB), were used to prepare the scaffolds. The short term inflammatory/immune host 

reaction was assessed by SC and IM implantations in rats after 1 and 2 weeks and the long term 

host response was addressed after 8 and 12 weeks of SC implantation of both types of SPCL 

scaffolds in rats. After each time period, the scaffolds, surrounding tissue and nearby lymph 

nodes were explanted and used for histological analysis and molecular biology evaluation. The 

results showed that SPCL-WS scaffolds seem to induce a slight lower inflammatory/immune 

reaction in both types of implantation models. Nonetheless comparing the two models the IM 

implantation resulted in a slightly higher inflammatory response than the SC implantation with 

early activation of the lymph nodes. The overall data suggests a good integration of the materials 

in the host, independently of the tissue location with a normal progress of the reaction for all the 

conditions. 
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*This chapter is based on the following publication: 

 

T. C. Santos, A. P. Marques, B. Höring, A. R. Martins, K. Tuzlakoglu, A. G. Castro, M. van 

Griensven, R. L. Reis, In Vivo Short and Long Term Host Reaction to Starch-based Scaffolds. 

2009. Submitted. 
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6.2 Introduction 

The constant biomaterials development in the Tissue Engineering (TE) field has been attempting 

to answer to the rising needs of the new tissue replacement/regeneration strategies. 

Nonetheless, the increasing complexity of the TE devices, comprising cells [1-6] and/or bioactive 

agents [7-10] within 3D scaffolding structures, comprises additional concerns regarding adverse 

host reactions to the implantable constructs [11]. A considerable number of studies [12-16] have 

been demonstrating the immunomodulatory properties of mesenchymal stem cells obtained from 

different sources which seem to circumvent a potential host rejection of the transplanted cells.   

The incorporation of foreign growth factors, eventually considered as immunogenic, in TE 

constructs is nowadays a recurrent approach as researchers have laid their expectation in 

recombinant technology to produce recombinant bioactive molecules [8, 9, 17] with a key role in 

tissue regeneration. 

It seems though that, despite all the investment in the research on stem cells technology, as well 

as in the identification of key mediators in inflammation/immune reaction and differentiation 

pathways, the role of support biomaterials in the host reaction has been neglected. Natural-origin 

biomaterials are considered for many years as a way to improve, in comparison to synthetic 

polymers, in vivo biofunctionality and to modulate/avoid a harmful host response due to its 

similarities with biological molecules. Starch-based scaffolds, processed using several 

methodologies aiming at different TE applications [18-25], have been demonstrating a great 

potential in the field. Very promising results for bone tissue regeneration have been particularly 

obtained with a blend of starch and poly-caprolactone (SPCL) [19-22, 24, 26-29]. SPCL scaffolds, 

with adequate physicochemical and mechanical properties for bone TE [18, 21] and adequate 

degradability rate [23, 24, 30], have shown support mesenchymal stem cells growth and 

differentiation [18, 19] and to be excellent supporting structures for endothelial cells [21, 22, 31, 

32]. Consequently, a lacuna is still present concerning the in vivo reaction to SPCL-based 

scaffolds. A systematic study was carried out using two different rat implantation models, 

subcutaneous and intramuscular, aiming at primarily to understand the tissue reaction to two 

SPCL-based scaffolds produced by different methodologies, wet spinning [25] and fibre-bonding 

[21], both at short and long term implantation periods, and secondly, to identify eventual 

differences between the two models in terms of inflammatory/immune response elicited by the 

two different forms of SPCL-based scaffolds. 
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6.3 Materials and Methods 

6.4.1 Materials 

Starch-based scaffolds were produced from a blend of Starch with β-Polycaprolactone (30:70%) 

(SPCL), by two different methodologies described elsewhere: wet spinning (SPCL-WS) [25] and 

fibre-bonding (SPCL-FB) [21]. Briefly, for the production of SPCL-WS scaffolds, the polymer was 

dissolved in chloroform at a concentration of 40% (w/v) in order to obtain a polymer solution with 

proper viscosity. The polymer solution was loaded into a syringe, placed in a syringe pump 

(World Precision Instruments, UK) and a certain amount of polymer solution was subsequently 

extruded into a methanol coagulation solution. The fibre mesh structure was formed during the 

processing by the random movement of the precipitation container. The formed scaffolds were 

then dried overnight at room temperature to allow any remaining solvents to evaporate. For the 

fabrication of the SPCL-FB scaffolds, fibre-meshes previously obtained by a meltspinning 

methodology were placed in a glass mould and heated in an oven at 150ºC. Immediately after 

removing the moulds from the oven, the fibres were slightly compressed by a Teflon cylinder and 

then cooled at −15ºC. All samples were cut into discs of 5 mm diameter and approximately 1mm 

thickness and sterilized by a standard procedure with ethylene oxide [33]. 

6.4.1 Intramuscular implantation 

Six male Sprague Dawley rats weighting between 380 g and 400 g (3 for each implantation time) 

were used. Each animal was anaesthetized with an intramuscular injection of 90 mg/Kg ketamine 

hydrochloride and 5 mg/Kg xylazine hydrochloride. After shaving and disinfecting the back of the 

animals, 4 paraventral skin incisions, of approximately 2 cm containing the subcutis and the 

Panniculus Carnosus, were performed under surgical sterile conditions. An incision on the fascia 

of the back muscle was performed and craniolateral oriented muscle-pockets were created by 

blunt dissection. After introducing the scaffolds (4 scaffolds per animal), previously embedded 

into a sterile saline solution, the fascia, the Panniculus carnosus and finally the skin were 

carefully sutured. The animals were kept in single cages with food and water ad libitum during all 

time of implantation. During the first week, the animals received daily 200 µg/g of body weight of 

metamizole sodium in drinking water ad libitum. 

6.4.2 Subcutaneous implantation 

Six male Sprague Dawley rats weighting between 350 g and 380 g (3 for each implantation time 

of 1 and 2 weeks), were used. Each test animal was anaesthetized with an intramuscular 

injection of 90 mg/Kg ketamine hydrochloride and 5 mg/Kg xylazine hydrochloride and 2 medial 

and ventral incisions of approximately 2 cm containing the subcutis and the Panniculus Carnosus 

were performed in the dorsum of the rats. Craniolateral oriented pockets (2 per incision) were 
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subcutaneously created by blunt dissection. The scaffolds (4 scaffolds per animal), previously 

embedded into a sterile saline solution, were introduced into the pockets and the Panniculus 

carnosus and the skin were carefully sutured. The animals were kept in single cages with food 

and water ad libitum during all time of implantation. During the first week, the animals received 

daily 200 µg/g of body weight of metamizole sodium in drinking water ad libitum. 

For a long term reaction, six male Sprague Dawley rats, 3 for each implantation time, and 

weighting between 280g and 340g were used for the subcutaneous implantation of the SPCL 

scaffolds. The surgical procedure followed was the same as above mentioned for the 

subcutaneous implantation. 

6.4.3 Post-implantation analysis 

At the end point times (1, 2, 8 and 12 weeks), each animal was intramuscularly anaesthetized 

and sacrificed with an intracardial overdose of 90 mg/Kg ketamine hydrochloride and 5 mg/Kg 

xylazine hydrochloride. From each animal the 4 implanted scaffolds and surrounding tissue, as 

well as the axillary and inguinal lymph nodes, were explanted. The explanted samples were either 

fixed in 3.7% formalin for histological evaluation, or frozen for posterior molecular biology 

analysis. The histological analysis of cross-section samples was performed after Haematoxylin 

and Eosin (HE), and Masson Goldner Trichrome (MGT) staining and immunohistochemistry using 

a monoclonal mouse anti-human CD3 antibody (Dako, Denmark) with cross reactivity for rat T 

lymphocytes, a monoclonal  mouse anti-rat CD18 antibody (Serotec, UK) for Integrin β2 chain of 

recruited leukocytes, and a monoclonal mouse anti-human phosphoinositide 3-Kinase (Pi3K) 

antibody (BD, Belgium) with cross reactivity for rat activated and proliferating lymphocytes, 

following standard protocols. Reverse transcriptase polymerase chain reaction (RT-PCR) to 

detect the expression of IL-1α, IL-18, IL-10, IL-13, IFN-γ and MHC class II genes was carried out 

(table 1). Image analysis of the histological sections of the 8 and 12 weeks explants, considering 

the scaffold and the inflammation areas, was performed with the Olympus CellP software 

(Olympus, Belgium) and an Olympus BX61 Microscope (Olympus, Belgium).  
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Table 6.1: Forward and Reverse sequences of the genes detected by RT-PCR on rat samples. 

 

6.4.4 Statistical Analysis 

Mean values and standard deviations are reported for the measurements [34] of the scaffold and 

the associated inflammation areas. Data was analysed by a single factor ANOVA test and the 

significance value was set for p<0.05. 

 

6.4 Results 

6.4.1 Intramuscular implantation 

Macroscopic signs of inflammation, infection or swelling were absent after 1 and 2 weeks of 

intramuscular implantation of the different types of SPCL scaffolds (Fig.6.1). 

The histological analysis of the explanted materials and respective surrounding tissue revealed 

the absence of oedema and necrosis both at 1 and 2 weeks of implantation (Figs. 6.2.1.A.C.E.F). 

At the first week of intramuscular implantation of SPCL-FB scaffolds, the inflammatory infiltrate 

around the scaffold fibres (Fig. 6.2.1A) was mainly constituted by polymorphonuclear neutrophils 

(PMNs), characterised by their multilobular nuclei. The presence of recruited leukocytes, CD18 

positive cells, was confirmed by immunohistochemistry using the specific marker of β-2 integrin 

Function Gene Sequences 
Tm 

(ºC) 
Bp 

Housekeeping gene GAPDH 
Sense - GGTGATGCTGGTGCTGAGTA 59.4 

81 
Antisense - GGATGCAGGGATGATGTTCT 57.3 

Pro-inflammatory 

IL-18 
Sense - AGATGTGGAACTGGCAGAGG 59.4 

220 
Antisense - CCCATTTGGGAACTTCTCCT  57.3 

IL-1α 
Sense –GCAAAGCCTAGTGGAACCAG 59.4 

244 
Antisense -GCAGAAGGTGCACAGTGAGA 59.4 

Anti-inflammatory 

IL-10 
Sense - GAATTCCCTGGGAGAGAAGC 59.4 

219 
Antisense - CCGGGTGGTTCAATTTTTCAT  55.9 

IL-13 
Sense - ATCGAGGAGCTGAGCAACAT   57.3 

189 
Antisense - CGAGGCCTTTTGGTTACAGA 57.3 

IFN-γ 
Sense - GCCCTCTCTGGCTGTTACTG 61.4 

221 
Antisense - CTGATGGCCTGGTTGTCTTT 57.3 

MHC class II 
Sense - TCCCAGATACACAGCAGCAG  59.4 

320 
Antisense -  CATGCGAAGGTTCTCCAGTT 57.3 
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(Fig. 6.2.2A). The analysis carried out for the SPCL-WS scaffolds implanted intramuscularly 

seemed to indicate the diminishment of the inflammatory infiltrate (Fig. 6.2.1C) in comparison to 

what was observed for the SPCL-FB. Although PMNs were also present at the surrounding area 

of the scaffold’s fibres (Fig. 6.2.2C). At this early stage of implantation it was noticed that for both 

SPCL-WS and SPCL-FB scaffolds, some collagen network started to be deposited between the 

scaffold’s fibres, as showed by the MGT staining (Figs. 6.2.1B and D).  

At the second week of implantation, the nature of the observed inflammatory infiltrate in the tissue 

surrounding the SPCL-FB scaffolds implanted intramuscularly was different than the observed at 

the first week of implantation. Mononuclear cells (Fig. 6.2.1E), namely T lymphocytes, positive 

cells for the CD3 marker (Fig. 6.2.2E), were predominant. Similarly, T lymphocytes were also 

present in the tissue surrounding the SPCL-WS fibres (Fig. 6.2.2G). Additionally, some foreign 

body giant cells (FBGCs) appeared at the fibres interfaces of both the SPCL-WS and the SPCL-

FB scaffolds (Figs. 6.2.1.E and G). In comparison to the first week of implantation, a denser 

network of collagen fibres was also observed two weeks after the intramuscular implantation of 

both types of SPCL scaffolds (Figs. 6.2.1F and H). After 2 weeks of implantation, a significant 

amount of blood vessels was also observed within the tissue surrounding the fibres of both SPCL 

scaffolds. 

In order to evaluate an eventual systemic host response to the intramuscular implantation of the 

different types of SPCL scaffolds, the axillary and inguinal lymph nodes were analysed. The 

general structure of the lymph nodes, assessed after HE staining, revealed the presence of 

germinal centres (lighter area), populated mainly with activated B lymphocytes, and some plasma 

cells (Figs. 6.2.3 A and C) in the cortex  of the nodes after one week of implantation of both SPCL 

scaffolds. Additionally, denser areas surrounding the germinal centres comprehending 

lymphocytes, which are characterised by the intense blue nuclei staining (Figs. 6.2.3 A and C), 

were observed. A specific assessment of cell proliferation was carried out by tracking the signal 

transduction molecule PI3K. Very few cells were positive for PI3K and no differences were 

observed between one and two weeks of implantation of the two types of SPCL scaffolds. At the 

second week of implantation, the explanted lymph nodes still revealed the presence of germinal 

centres, with no differences between the two different types of scaffolds (Figs. 6.2.3 E and G). 

Once more, the immunolabelling of PI3K showed a low number of positive cells for both types of 

SPCL scaffolds (Figs. 6.2.3 F and H). 
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7 Days 

  

14 Days 

  

8 Weeks 

  

12 Weeks 

  
Figure 6.1: Photographs of the explanted fibre bonding (FB) and wet-spinning (WS) produced starch-

based scaffolds, after one, two, eight and twelve weeks of intramuscular (IM) and subcutaneous (SC) 

implantations in rats. All scaffolds have 5mm diameter. * - SPCL scaffold. 

 

The molecular biology analysis for specific genes of inflammation showed that, both after 1 and 2 

weeks, the intramuscular implantation of SPCL-WS and SPCL-FB induced the expression of the 

inflammatory cytokines IL-18 and IL-1α as well as the anti-inflammatory cytokines IL-10 and IFN-

γ (Fig. 6.4). In the same manner, the MHC class II was also expressed at both time periods of 

implantation and for the different types of SPCL scaffolds (Table 6.2). Concerning the other anti-

IM - FB SC - WS 

IM - FB SC - WS 

SC- FB SC - WS 

SC- FB SC - WS 

* * 

* * 
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inflammatory cytokine IL-13, it was expressed in all conditions tested except after 2 weeks of 

implantation of the SPCL-FB scaffolds (Table 6.2). 

 

Table 6.2: Results for the genes detected by RT-PCR on rat samples. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.2 Subcutaneous implantation 

Macroscopic signs of inflammation, infection or swelling were absent at the end points of the 

subcutaneous implantation of the SPCL-WS and SPCL-FB scaffolds, (Fig. 6.1). The nonexistence 

of oedema and necrosis was also histologically confirmed (Figs. 6.3.1.A.C.E.F) for all the 

conditions. A moderate inflammatory infiltrate, essentially characterised by the presence of PMNs 

(Figs. 6.3.1.A and C), was observed one week post subcutaneous implantation of both SPCL-WS 

and SPCL-FB scaffolds. However, the intensity of the observed inflammation appeared to be 

diminished in comparison to what was observed in the first week of intramuscular implantation, in 

particular for the SPCL-FB scaffold (Figs. 6.3.1.A and C and Figs. 6.3.1.A and C). The CD18 

immunodetection confirmed the presence of mainly recruited PMNs, also identified by the 

multilobulated shape of the nuclei, at the first week of subcutaneous implantation of both types of 

 GAPDH IL-18 IL-1α IL-10 IL-13 IFN-γ  MHC II  

7D - SC - WS + - + - - - - 

7D - SC - FB + - + - - - - 

7D - IM - WS + + + + - + + 

7D - IM - FB + + + + - + + 

14D - SC - WS 
+ - + - - - - 

      + 

14D - SC - FB + - + - - - - 

14D - IM - WS + + + + - + + 

14D - IM - FB + + + + + + + 

8W - SC - WS + - + + + + + 

8W - SC - FB 
+ + + + + + + 

+        - -  

12W - SC - WS 
+ - + + + + + 

 
 

 
  

- 
 

12W - SC - FB 
+ - + - + - - 

 
 

 
  

+ + 
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SPCL scaffolds (Figs. 6.3.2.A and C). Similarly to what was observed for the intramuscular 

implantation of SPCL scaffolds, at one week of reaction, a collagen network started to be 

deposited between the scaffold’s fibres, although at an apparent lower density (Figs. 6.3.1.B and 

D). 

Two weeks after the SPCL scaffolds being subcutaneously implanted, the nature of the 

inflammatory infiltrate changed in comparison to the first week of implantation. Some 

mononuclear cells and FBGCs were observed in the vicinity of the scaffold’s fibres (Figs. 6.3.1.E 

and G). This tendency was observed for both SPCL-WS and SPCL-FB scaffolds, although the 

FBGCs density seemed to be greater at the SPCL-FB scaffold’s interface (Figs. 6.3.1.G). 

Mononuclear cells were confirmed to be essentially T lymphocytes, positive for the CD3 marker, 

both in SPCL-WS and SPCL-FB (Figs. 6.3.2.E and G). At week 2, a higher amount of blood 

vessels, which seems to be enhanced in comparison to the intramuscular implantation of the 

SPCL scaffolds, was observed within the tissue surrounding the fibres of the subcutaneously 

implanted scaffolds. Like for the intramuscular implantation, the collagen network became more 

organized (Figs. 6.3.1.F and H) on the outline of the fibres 2 week after the subcutaneous 

implantation of both types of SPCL scaffolds. 

In terms of systemic reaction, the overall observation of the lymph nodes structure revealed that, 

one week after subcutaneous implantation of both SPCL-WS and SPCL-FB, germinal centres 

(lighter area) were present in the cortex of the nodes (Fig. 6.3.3 A and C). Comparatively to the 

intramuscular implantation of SPCL scaffolds, denser areas surrounding the germinal centres of 

the lymph nodes comprehending lymphocytes (Fig. 6.3.3 A and C), were also observed. PI3K 

was not detected in the lymph nodes of the animals with SPCL-WS subcutaneously implanted for 

1 week (Figs. 6.3.3.B, D, F and H). Although positive for the other conditions, only few positive 

cells were observed. Two week after implantation, the explanted lymph nodes still revealed the 

presence of germinal centres, with no differences between the animals implanted with the two 

types of scaffolds (Fig. 6.3.3 E and G). Again, PI3K signal was only present in a small number of 

cells in the nodes of the animals with both types of SPCL scaffolds implanted (Fig. 6.3.3 F and 

H). 

The evaluation of a long term host response to the implantation of SPCL-FB and SPCL-WS 

scaffolds was performed after 8 and 12 weeks of subcutaneous implantation.  

The macroscopic features observed at the end time points were similar to the ones found for the 

short term implantation. In fact, the implantation site did not show visible signs of inflammation, 

infection or swelling (Fig. 6.1). At 8 weeks of implantation the histological observation revealed a 

similar reaction for both SPCL scaffolds (Figs. 6.3.4A and C). The inflammatory infiltrate was 
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reduced in comparison to the short term subcutaneous implantation time periods (1 and 2 

weeks). No significant differences were observed between 8 and 12 weeks of implantation of the 

two types of SPCL scaffolds (Figs. 6.3.4E and G).  

The obtained results regarding the quantification of inflammation around the two types of SPCL 

scaffolds revealed to be identical. Therefore only the results for the SPCL-WS scaffolds are 

mentioned. The SPCL-WS scaffolds occupied an area which did not vary significantly from 8 to 

12 weeks of implantation (Fig. 6.5). At 8 weeks of implantation the area of the inflammatory 

infiltrate was significantly lower than the area of the scaffolds (Fig. 6.5). However, the 

inflammation area notably increased from 8 to 12 weeks (Fig. 6.5) of implantation. Additionally, 

the inflammation area at 12 weeks of implantation was significantly higher compared with the 

area occupied by the implanted SPCL-WS scaffolds (Fig. 6.5). 

  



 

 

 

 
Figure 6.2.1: Micrographs of the sections of the explanted fibre bonding and wet

starch-based scaffolds, after one (A

was stained with Haematoxylin & Eosin (A, C, E, G) and Masson G
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: Micrographs of the sections of the explanted fibre bonding and wet

based scaffolds, after one (A-D) and two (E-H) weeks of intramuscular implantation in rats. Tissue 

was stained with Haematoxylin & Eosin (A, C, E, G) and Masson Goldner Trichrome (B, D, F, G). 
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Figure 6.2.2: Micrographs of the sections of the explanted fibre bonding and wet

starch-based scaffolds after one (A

was immunohistochemically labelled for CD18 and CD3. 
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: Micrographs of the sections of the explanted fibre bonding and wet

based scaffolds after one (A-D) and two (E-H) weeks of intramuscular implantation in rats. Tissue 

was immunohistochemically labelled for CD18 and CD3. * - SPCL scaffold. 
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Figure 6.2.3: Micrographs of the sections of the explanted lymph nodes, after one (A

weeks of intramuscular implantation in rats. Tissue was stained with Haematoxylin & Eosin (A, C, E, G) 

and immunohistochemically labelled for Pi3K (B, D, F, G).
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: Micrographs of the sections of the explanted lymph nodes, after one (A

intramuscular implantation in rats. Tissue was stained with Haematoxylin & Eosin (A, C, E, G) 

and immunohistochemically labelled for Pi3K (B, D, F, G). 
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Figure 6.3.1: Micrographs of the sections of the explanted fibre bonding and wet

starch-based scaffolds, after one (A
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: Micrographs of the sections of the explanted fibre bonding and wet

based scaffolds, after one (A-D) and two (E-H) weeks of subcutaneous implantation in rats. Tissue 

was stained with Haematoxylin & Eosin (A, C, E, G) and Masson Goldner Trichrome (B, D, F, G). 
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Figure 6.3.2: Micrographs of the sections of the explanted fibre bonding and wet

starch-based scaffolds after one (A

was immunohistochemically labelled for CD18 and CD3. 
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: Micrographs of the sections of the explanted fibre bonding and wet

based scaffolds after one (A-D) and two (E-H) weeks of subcutaneous implantation in rats. Tissue 

was immunohistochemically labelled for CD18 and CD3. * - SPCL scaffold. 
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Figure 6.3.3: Micrographs of the sections of the explanted lymph nodes, after one 

weeks of subcutaneous implantation in rats. Tissue was stained with Haematoxylin & Eosin (A, C, E, G) 

and immunohistochemically labelled for Pi3K (B, D, F, G).
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: Micrographs of the sections of the explanted lymph nodes, after one (A

weeks of subcutaneous implantation in rats. Tissue was stained with Haematoxylin & Eosin (A, C, E, G) 

and immunohistochemically labelled for Pi3K (B, D, F, G). 
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Figure 6.3.4: Micrographs of the sections of the explanted fibre bonding and wet

starch-based scaffolds (A, E, C, G) and 

weeks of subcutaneous implantation in rats. * 
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: Micrographs of the sections of the explanted fibre bonding and wet

based scaffolds (A, E, C, G) and nearby lymph nodes (B, F, D, H), after 8 ( A

weeks of subcutaneous implantation in rats. * - SPCL scaffold. 
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Figure 6.4: Representative photograph of the electrophoresis gels reporting the results of the detected 

genes by PCR. This gel shows the results obtained for the IL-10 gene on the intramuscularly implanted 

SPCL scaffolds (1 to 6), and on the subcutaneously implanted SPCL scaffolds (7 to 13). Line 14 is the 

negative control and A is the cDNA marker. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Areas occupied by the SPCL scaffolds and by the inflammatory infiltrate relatively to the total 

area quantified on the micrographs (Mean ± STD); * represent significant differences (p<0.05).  
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expected the expression of a pro-wound healing pattern of cytokines, although that was not 

observed. Thus, after 8 weeks of subcutaneous implantation, both types of SPCL scaffolds 

induced the expression of IL-10, IL-13, IFN-γ and MHC II, although half of the SPCL-FB samples 

did not induce the expression of IL-13 and IFN-γ (Fig. 6.4 and Table 6.2). When SPCL-WS was 

implanted for 12 weeks, all the anti-inflammatory cytokines tested were expressed, albeit IFN-γ 

was not expressed in half of the samples (Table 6.2). For the same time of implantation, the 

SPCL-FB scaffolds induced the expression IL-13 in all samples, but IFN-γ and MHC II only in half 

of the samples (Table 6.2). On the contrary, IL-10 was not expressed after 12 weeks of SPCL-FB 

implantation (Fig. 6.4 and Table 6.2).  

 

6.5 Discussion 

The evaluation of the host reaction induced by the biomaterials aimed for TE application has 

been neglected, partly due to the increasing significance given to the other components of TE 

constructs, such as cells and growth factors [11]. This research work aimed to stress the 

influence and the relevance of the support material over the host reaction to an implanted TE 

construct, by addressing the response elicited by the implantation of two different types of SPCL 

scaffolds.  

Microscopically, the subcutaneous implantation, considering the first 2 time periods, acute and 

onset of chronic inflammation respectively, showed a slight lower inflammatory reaction in 

comparison to the intramuscular implantation of both types of SPCL scaffolds. However, when 

the SPCL scaffolds were subcutaneously implanted for longer periods, the implant was perfectly 

integrated into the host tissue and the inflammatory process was resolving. In fact, the 

histological analysis at 8 and 12 weeks after SC implantation, showed the absence of fibrotic 

capsule, lower amounts of FBGCs and the total inflammation area was not significant in 

comparison to the area occupied by the scaffolds. 

The presented results indicate that intramuscular implantation of biomaterials may be considered 

a more reactive implantation model to evaluate biomaterial-host interaction in terms of 

inflammatory/immune response, since the subcutaneous implantation showed a slight lower 

inflammatory/immune reaction to the SPCL scaffolds.  

 

The present work showed that SPCL scaffolds induced the expression of IL-18 when 

intramuscularly implanted both for 7 and 14 days. This means that macrophages are activated at 

the implantation site [35]. The presented results revealed a associated expression of IL-18 and 
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IFN-γ, which is in accordance with previous a precious report demonstrating that IL-18 acts in T 

lymphocytes to induce the production of IFN-γ [35]. Conversely, the subcutaneous implantation of 

the SPCL scaffolds did not induce IL-18 expression and subsequent up-regulation of IFN-γ 

secretion by T lymphocytes. This may indicate that the inflammatory process is being resolved 

with PMNs apoptosis following activation [36]. However, IL-1α is expressed at all times of 

implantation and in both implantation models. It is well known that in the early stage of 

inflammation IL-1α is expressed by macrophages and endothelial cells which thus stimulate 

activation of B and T lymphocytes, and at latter inflammation phase is secreted by dendritic cells 

and B lymphocytes [35], which explains the detection of IL-1α at an early stage expressed by 

macrophages and at a later stage secreted by B lymphocytes and dendritic cells. Beezhold and 

Lause [37] demonstrated that macrophage interaction with fibronectin can lead to an increased 

release of IL-1 cytokines and increased IL-1 mRNA expression. This may also be a reason for the 

constant presence of IL-1α along all the implantation periods, meaning that macrophages were in 

contact with the fibronectin deposited on the SPCL scaffold’s surface [27]. 

In the present work IL-10 was expressed in the intramuscular implantation at 7 and 14 days, as 

well as in the SC implantation for 8 weeks. Since IL-10 is secreted by TH2 lymphocytes and acts 

on antigen presenting cells (APCs) by down-regulating MHC class II expression [35], our results 

showing the simultaneous IL-10 and MHC class II expression were not expected. A possible 

reason for the observed expression patterns of the MHC class II encoding genes is the close co-

relation with IFN-γ expression, since it was previously reported that the inhibition of IFN-γ 

coincides with MCH class II inhibition [38].  

At later time of implantation, SPCL scaffolds induced the expression of IL-13, an important 

regulator of inflammation and a pro-wounding cytokine [35]. This occurred as expected [39] and 

indicates that the surface chemistry of the SPCL scaffolds do not inhibit wound healing. 

After 8 weeks of subcutaneous implantation of the SPCL scaffolds, the differences observed for 

the 2 different types of scaffolds were non considerable, indicating that resolution of inflammation 

took place with the integration of the scaffolds in the host tissue. At week 12 after implantation, 

the induced cytokine expression profile was typical of chronic inflammatory process and normal 

ongoing of inflammation provoked by the implantation of biodegradable biomaterials, although no 

fibrotic capsule was histologically observed surrounding the fibres of the scaffolds. 

The present results show that SPCL scaffolds produced by two different methodologies, wet 

spinning [25] and fibre-bonding [21] do not induce a severe soft tissue inflammatory reaction. This 

could be observed by the low host reaction detected after subcutaneous and intramuscular 
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implantations of both types of SPCL scaffolds in rats for 1 and 2 weeks. Additionally, the a long-

term implantation in the subcutaneous tissue of rats for 8 and 12 weeks showed a good 

integration of the SPCL scaffolds into the host tissue and a pro-wound healing cytokine profile 

expression. 

 

6.6 Conclusions 

The present work demonstrates that SPCL scaffolds produced by wet spinning (SPCL-WS) or by 

fibre bonding (SPCL-FB) methodologies induce a moderate inflammatory reaction after 

subcutaneous and intramuscular implantations. Nevertheless, SPCL-WS seemed to be less 

reactive, particularly when the cytokine profile was evaluated, showing an early resolution of the 

inflammatory process compared with the SPCL-FB scaffolds.  

Additionally, it was shown that the intramuscular (IM) implantation of the same type of materials 

induces a slight intense inflammatory response in comparison to the subcutaneous (SC) model, 

which may indicate that IM implantation is a more sensitive model to address the inflammation 

and immune host response to biomaterial’s implantation. 
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Chapter VII 

In vivo evaluation of the suitability of starch-based constructs for tissue engineering 

applications 

 

 

7.1 Abstract  

The ideal bone tissue engineering construct remains to be found, although daily discoveries 

significantly contribute to improvements in the field and certainly have valuable long term 

outcomes. In this work, different tissue engineering elements, aiming at bone tissue engineering 

applications, were assembled. Starch/polycaprolactone (SPCL) scaffolds, obtained by two 

different methodologies, were combined with fibrin sealant (Baxter®), human Adipose-derived 

Stem Cells (hASCs), and growth factors (Vascular Endothelial Growth Factor – VEGF or 

Fibroblast Growth Factor-2 – FGF-2), and implanted in vascular endothelial growth factor 

receptor-2 (VEGFR2)-luc transgenic mice. The performance of the designed constructs was 

followed using a luminescence device (Xenogen®) and at the end of observation (2 weeks) the 

explants were retrieved to perform histological analysis and RT-PCR for vascularisation (VEGF 

and VEGFR-1) and inflammatory (TNF-α, IL-4 and INF-γ) markers. 

The results clearly showed that starch-based scaffolds obtained by wet spinning and by fibre 

bonding methodologies constitute a quite adequate support for ASCs. Furthermore it was 

demonstrated that the assembled TE constructs composed by fibrin sealant, ASCs, VEGF and 

FGF-2 induce only a mild inflammatory reaction after 2 weeks of implantation, and that the 

release of VEGF and FGF-2 from the constructs enhance the expression of VEGFR-2 as well as 

specific molecular markers of neovascularisation. 
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7.2 Introduction 

The field of tissue engineering (TE) has achieved several successes within the recent past [1, 2]. 

Different biomaterials, cells, growth factors and stimulation conditions, as well as numerous 

combinations among them have been proposed by several research groups as potential routes to 

assemble the perfect bone TE construct [3-8]. Despite this, in bone TE, vascularisation remains a 

fairly large concern, not yet perfectly addressed. Besides the well known fact that bone is 

extremely dependent on a vascular network which provides nutrients, minerals and oxygen 

essential for cell survival [9], angiogenesis was shown to play a key role, not only in bone growth 

[9], but also in bone healing [10] and consequently in bone tissue regeneration. Numerous 

strategies [5, 11-13] have therefore emerged as a need to achieve the vascularisation of bone 

engineered constructs within a reasonable time, which contributes to attain functional tissue 

substitutes.  

Noteworthy, works have been showing that endothelial cells, either in single culture or co-cultured 

with primary osteoblasts or stem cells, in 3D structures leads to the formation of vascular-like 

structures in vitro [14, 15] and improves vascularisation in vivo [11, 16-18]. Nevertheless, despite 

the developments in cell isolation and culture technologies, the variability of cell sources, as well 

as in culture conditions among the different studies is still a major issue and might jeopardize 

some of the conclusions drawn.  

A valuable alternative to tackle the vascularisation of bone TE constructs relies on the 

incorporation in the construct of important mediators, such as vascular endothelial growth factor 

(VEGF) [6, 17-20] and fibroblast growth factor (FGF) [21, 22], that can be controlled released 

from the scaffolding material. 

In fact the incorporation of VEGF and subsequent release has been achieved with microspheres 

[20], hydrogels [21, 22] and 3D scaffolds [17]. For all these systems VEGF release showed to 

promote in vitro and in vivo vascularisation [17, 20]. In the same context, FGF-2 showed 

increased in vivo neovascularisation after being released from a chitosan/heparinoid hydrogel 

after subcutaneous implantation [21, 22]. A combined approach, VEGF plus FGF incorporated 

into chitosan hydrogels was also attempted with confirmed release of both growth factors within 

the first day and with a significant stimulation of human umbilical vein endothelial cells (HUVEC) 

[23]. An uncertain issue is however the degradation rate of the carriers and subsequently the 

release profile and doses of the loaded factors which, if not controlled, might induce an 

unexpected reaction [23]. Considering this, a different cell-based strategy aiming at targeting not 

only the vascularization but also the regeneration of a vascularised tissue as bone, has been also 

proposed [7, 11]. The differentiation potential of several mesenchymal stem cells (MSCs) has 
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been taken into consideration when cell-seeded matrices are transplanted into several in vivo 

regeneration models expecting that the undifferentiated cells either undergo a commitment into 

the lineages of interest [5, 18] or significantly contribute to signalling host progenitor cells [16]. 

In this work it was hypothesised that the assembly of a complex tissue engineering construct, 

comprehending a well studied starch-based scaffold (SPCL) [3, 24, 25] and fibrin glue [26], 

human adipose-derived stem cells (hASCs) [27] and key growth factors (VEGF and FGF-2) [28, 

29], would induce the vascularisation of the construct, compared to the scaffold by itself and with 

different, reduced combinations of the same factors. 

Taking into consideration the features of the mentioned cells, growth factors and materials used 

in the last years of investigation in TE, as well as the results of the present research work, it will 

be possible to achieve a deeper knowledge on the role of specific mediators on the integration 

and performance of the assembled TE constructs. Particularly, with this work it was shown that 

SPCL-based scaffolds are an adequate support for ASCs transplantation into a host and that the 

SPCL-based TE constructs composed of fibrin sealant, ASCs, VEGF and FGF-2 induce a 

moderate inflammatory response typically observed for implanted devices. Additionally, the 

release of VEGF and FGF-2 from those TE constructs showed to enhance the expression of 

VEGFR-2, as well as important mediators in the vascularisation of newly formed tissue, such as 

VEGF and VEGFR-1. 

 

7.3 Materials and Methods 

7.3.1 Transfection of the ASCs  

In other to trace the human Adipose-derived Stem Cells (hASCs) after implantation, cells were 

prior transfected with a luciferase plasmid using Lipofectamine™2000 (Invitrogen, UK). Cell 

transfection was carried out according to the manufacturer’s recommendations. Briefly, luciferase 

DNA (plasmid) and lipofectamine was separately diluted in 50µl of Ham’s F-12 cell culture 

medium (Sigma-Aldrich, Germany), without foetal calf serum (FCS), complemented with 1% L-

Glutamin, and antibiotics (basal medium), and gently mixed. The two solutions were mixed and 

incubated for 20 minutes at room temperature in order to allow the formation of “lipo-complexes”. 

After the incubation period, the mixture was added to the cells in culture and left for 4 hours after 

which the medium was changed to fresh basal medium. The cells were ready to be used 

approximately 20 hours after the transfection procedure. 

7.3.2 Starch-based Scaffolds Production  

Starch-based scaffolds were produced from a blend of Starch with Poly-ε-caprolactone (30:70%) 

(SPCL), by two different methodologies described elsewhere: wet spinning (SPCL-WS) [4] and 
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fibre-bonding (SPCL-FB) [3]. Briefly, for the production of SPCL-WS scaffolds, the polymer was 

dissolved in chloroform at a concentration of 40% (w/v) in order to obtain a polymer solution with 

proper viscosity. The polymer solution was loaded into a syringe, placed in a syringe pump 

(World Precision Instruments, UK) and the solution was subsequently extruded into a methanol 

coagulation solution. The fibre mesh structure was formed during the processing by the random 

movement of the precipitation container. The formed scaffolds were then dried overnight at room 

temperature to allow any remaining solvents to evaporate. For the fabrication of the SPCL-FB 

scaffolds, fibre-meshes previously obtained by a meltspinning methodology were placed in a 

glass mould and heated in an oven at 150ºC. Immediately after removing the moulds from the 

oven, the fibres were slightly compressed by a Teflon cylinder and then cooled at −15ºC [3]. All 

samples were cut into discs of 5mm diameter and approximately 1mm thickness and sterilized by 

a standard procedure with ethylene oxide [30]. 

7.3.3 Assembly of the tissue engineering constructs  

For the cell tracking experiments the two types of SPCL scaffolds were seeded with the 

transfected hASCs in a concentration of 1.33x104 cells/scaffold in basal medium supplemented 

with 10% FCS and 1% antibiotics (penicillin/streptomycin), and incubated for 24 hours at 37ºC 

and 5% CO2 in a humidified environment.  

The assembling of the TE constructs to implant in the VEGF-R2 transgenic mice was performed 

as follows: each type of SPCL scaffold was mixed with the 2.0 ml two-component FS Tisseel VH 

(Baxter AG, Vienna, Austria), growth factors (VEGF and FGF-2), and hASCs. The sealer protein 

component (Fibrinogen 75–115mg/ml) was reconstituted with a fibrinolysis inhibitor solution 

(Aprotinin 3,000 KIU/ml) and spiked either with VEGF (200 ng/ml) or FGF-2 (200 ng/ml). The 

thrombin component (500 IU/ml) was reconstituted with CaCl2 (40-mmol/ml) and diluted to 4 

IU/ml [31]. Scaffolds, cells (1.5x104 cells/scaffold/50µl) and growth factors, which were added to 

the fibrinogen component, were then mixed with the thrombin component (1:1), in a total volume 

of 75µl, at 37ºC. The clot was allowed to form for 15 minutes, at 37ºC and 5% CO2 after which 

300µl of cell culture medium was added. Constructs were kept overnight at 37ºC and 5% CO2. 

7.3.4 In vivo implantation 

7.3.4.1 Nude Mice 

All the animal experiments were previously approved by the local ethical authorities. The in vivo 

fate of the in vitro transfected hASCs seeded onto SPCL scaffolds was followed in nude mice. 

Thirteen female Balb/c nu/nu nude mice, with an average weight of 21.6g±1.2 were used: 6 

animals to implant the SPCL-WS scaffolds, 6 animals to implant the SPCL-FB scaffolds and one 

animal as control. All surgical procedures were performed under sterile conditions in a vertical 
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laminar flow hood. Each animal was intraperitoneally (IP) anaesthetized with ketamine (60 mg/kg) 

and xylazine (7.5 mg/kg). Subsequently, the skin of the mice was disinfected with betaisodona 

and two lateral incisions of approximately 0.5 cm, containing the subcutis and Panniculus 

carnosus, were performed in the back of the animals. Two caudal-lateral oriented pockets were 

created in each animal by blunt dissection, where the TE constructs with the transfected ASCs 

were inserted. After implantation, the Panniculus carnosus and the skin of the animals were 

carefully sutured. The bioluminescence signal, from the in vivo luciferase activity that identifies 

the location of the transfected cells, was quantified (emitted photon counts per second) using the 

Live Image Software (Xenogen®). Specific areas for the signal detection, considering the original 

location of the implants and possible migration of the cells from the constructs, were pre-

determined (Fig. 7.1A): I and II correspond to the left and right implant sites; III corresponds to the 

dorsum of the animals, the most probable migration localization. Bioluminescence images were 

collected immediately after surgery and on days 1, 3, 6, 9, and 13. The luciferase activity was 

measured 15 minutes after luciferin subcutaneous injection and normalised to the respective 

areas for further graphical representation. 

7.3.4.2 Transgenic mice 

Thirty eight FVB/N-Tg(VEGF-r2–luc)Xen mice (VEGFR2-LUC) [32], with an average weight of 

33.8g±3.6 were used to assess the effect of the addition of VEGF, FGF-2, hASCs or fibrin 

sealant to the SPCL scaffolds for vascularisation. These mice carry a transgene that contains a 

4.5 kb murine VEGF-R2 promoter fragment that drives the expression of a firefly luciferase 

reporter protein [32].  

Six test groups were established per type of scaffold (Table 7.1): a) untreated control to measure 

endogenous expression of VEFG-R2 due to surgical procedure; b) scaffold group to measure 

expression of VEFG-R2 due to scaffold implantation (SPCL-WS and SPCL-FB); c) scaffold plus 

FS to measure the expression of VEGF-R2 due to the use of FS (SPCL-WS+FS and SPCL-

FB+FS); d) scaffold plus FS and hASCs group, to measure the expression of VEGF-R2 due to 

the presence of hASCs (SPCL-WS+FS+hASCs and SPCL-FB+FS+hASCs); e) scaffold plus FS, 

hASCs and VEGF (200 ng/mL) to measure the expression of VEGF-R2 induced by the VEGF 

delivery (SPCL-WS+FS+hASCs+VEGF and SPCL-FB+FS+hASCs+VEGF); and f) scaffold plus 

FS, ASCs and FGF-2 (200 ng/mL), to measure the expression of VEGF-R2 induced by the FGF-2 

delivery (SPCL-WS+FS+hASCs+FGF-2 and SPCL-FB+FS+hASCs+FGF-2).  
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Table 7.1: Distribution of the test groups for the in vivo implantation on the transgenic FVB/N-Tg(VEGF-

r2–luc)Xen mice. 

 

Group Condition 

a Control – subcutaneous pockets without any implant 

b SPCL-WS SPCL-FB 

c SPCL-WS+FS SPCL-FB+FS 

d SPCL-WS+FS+hASCs SPCL-FB+FS+hASCs 

e SPCL-WS+FS+hASCs+VEGF SPCL-FB+FS+hASCs+VEGF 

f SPCL-WS+FS+hASCs+FGF SPCL-FB+FS+hASCs+FGF 

 

Each animal was anaesthetized using 3% isoflurane for induction and maintaining with an i.p. 

injection of ketamine (60 mg/kg) and xylazine (7.5 mg/kg). Mice were injected subcutaneously 

with luciferin (150 mg/kg) and imaged with the in vivo imaging system (VivoVisions IVISs, 

Xenogen, Alameda, CA) to acquire the background image signal corresponding to the pre-

surgical activity, set to 100%). Specific areas for the bioluminescence detection were established 

(Fig. 7.2A): I corresponds to the incision area; II and III correspond to the left and right implant 

sites (pockets). The signal detected at the incision site correlates with the expression of the 

VEGFR2 gene with the ongoing inflammatory process as the incision heals. Each animal’s 

dorsum was then shaved and disinfected, and a 1 cm incision at the caudal aspect of the neck 

was made. For the subcutaneous implantation, a caudal lateral access to each flank was bluntly 

subcutaneously created through this incision, forming 2 pockets per animal. Into each pocket, the 

construct was inserted accordingly to the different test groups. Subsequent measurements in the 

pre-determined areas were referenced to the pre-surgical baseline and obtained immediately 

after surgery and on days 3, 6, 9 and 13 after implantation, as well as 15 minutes after luciferin 

injection. 

7.3.5 Ex vivo analysis 

At the end of observation (2 weeks), each animal was i.p. anaesthetized and subsequently 

sacrificed with an intracardial overdose of ketamine (60 mg/kg) and xylazine (7.5 mg/kg). The 

scaffolds and surrounding tissue were explanted and, half of the sample was fixed in 3.7% 

formalin for histological analysis, and the other half was snap frozen for molecular biology 

evaluation. Histology was performed according to existing standard protocols for haematoxylin 

and eosin staining (HE). Molecular biology was evaluated by reverse transcriptase polymerase 

chain reaction (RT-PCR) to detect the expression of vascularisation and inflammation (Table 7.2). 
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Table 7.2: Forward and Reverse sequences of the genes detected by RT-PCR. 

 

7.3.6 Statistical analysis 

Mean values and standard deviations are reported for the luminescence signal measurements 

[33] and represented graphically. Data was analysed by a single factor ANOVA test and the 

significance value was set at p<0.05. 

 

7.4 Results 

7.4.1 In vivo ASCs tracking  

The luminescence emitted by the transfected cells was acquired with the Live Image Software 

(Xenogen®) and recorded as emitted photon counts per second.  

Before the in vivo implantation of the tissue engineered constructs, a SPCL scaffold seeded with 

the transfected hASC for 24 hours, was placed into the dark chamber of the Xenogen® 

equipment to confirm the presence of luminescence-emitting cells on the scaffolds (data not 

shown). 

The signal emitted from the transfected cells was similar in both types of SPCL scaffolds, and the 

peak of emitted signal was detected at day 6 after implantation (Fig. 7.1B). Either for SCPL-WS 

and for SPCL-FB scaffolds, the luminescence signal starts to increase from day 2 onward, 

reaching the maximum value at day 6 and decreases from this day until the end point of the 

experiment, 13 days (Fig. 7.1B). Nevertheless, for the control condition, to which to pockets were 

created without any implantation, the signal was similar to the luminescence emitted by the 

transfected hASCs seeded on the SPCL-based scaffolds (Fig. 7.1). 

Function Gene Sequences Tm (ºC) Bp 

Vascularisation 

VEGF-α 
Sense - CCGAAACCATGAACTTTCT 55.19 

604 
Antisense - CGTTCGTTTAACTCAAGCTG 56.31 

VEGF-R1 
Sense - GAGGGATAACAGGCAATTC 54.59 

960 
Antisense - CCCAGCAAGATCGTATAGTC 54.91 

Inflammation 

IL-4 
Sense - TCATCCTGCTCTTCTTTCTC 54.67 

325 
Antisense - GATGTGGACTTGGACTCATT 54.82 

IFN-γ 
Sense - CTACCTTCTTCAGCAACAGC 55.36 

568 
Antisense - TGTAGACATCTCCTCCCATC 54.92 

TNF-α 
Sense - GTCTCAGCCTCTTCTCATTC 54.03 

654 
Antisense - CAGAGTAAAGGGGTCAGAG 54.57 
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The transfected cells seem to migrate from the scaffolds very early, as can be observed by the 

significant higher signal (p<0.05) detected in the dorsum of the mice, either implanted with the 

SPCL-WS or with the SPCL-FB scaffolds (Fig. 7.1B). However, the kinetics of the emitted signal, 

during the implantation time, is similar for the implant sites in comparison to the dorsum of the 

animals (Fig. 7.1B). 
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Figure 7.1: A) Schematic representation of a nude mouse with the areas considered for the capture of the 

luminescence signal emitted by the transfected cells seeded on the SPCL-based scaffolds: I and II 

correspond to the implantation sites; III corresponds to the dorsum (back) of the animals to where the cells 

eventually migrate. B) Graphical representation of the luminescence signal detected in the different areas, 

on the SPCL-WS and SPCL-FB implanted nude mice.  

 

7.4.2 In vivo induced neovascularisation potential  

7.4.2.1 VEGFR2 expression 

After the assembly of the tissue engineering constructs combining the starch-based scaffolds, 

hASCs, fibrin sealant and growth factors (VEGF or FGF-2), the constructs were subcutaneously 

implanted in the back of transgenic VEGFR2-LUC mice. The emitted luminescence was detected 

with the in vivo imaging system (VivoVisions IVISs, Xenogen) and acquired with the Live Image 

Software (Xenogen®), in the pre-determined areas of incision and implant sites (Fig. 7.2A). The 

luminescence signal identified the expression of the murine VEGFR2 gene 15 minutes after the 

subcutaneous injection of luciferin. 

The analysis of the luminescence showed that either at the implantation sites or at the incision 

area, the luminescence signal increased from the surgery day until day 6 decreasing from that 

time points onward (Figs. 7.2B-C).  

The expression of VEGFR2 at the SPCL-WS implantation sites was comparable (p>0.05) to the 

control for all time points except at the pre-implantation (Fig. 7.2B) time. In fact, the signal 

detected prior to implantation was significantly higher (p<0.05) than post-implantation which was 

similar (p>0.05) to the value at the end of observation.  

When fibrin sealant was added to the SPCL-WS scaffolds, a different profile of VEGFR2 

expression was observed in comparison to the scaffold alone (Fig. 7.2B). At day 3 of SPCL-

WS+FS implantation, the expression of VEGFR2 was significantly lower (p<0.05), increasing from 

that day onward to comparable values to the SPCL-WS. Moreover, the VEGFR2 expression for 

the SPCL-WS+FS decreased (p<0.05) along the time until day 3 and reaches a significantly 

higher (p<0.05) value at day 6, comparable to the one obtained at day 13 (p>0.05). Despite the 

same pattern of VEGFR2 expression at implantation sites and incision, the signal detected at the 

incision where the SPCL-WS+FS scaffolds were implanted was lower (p<0.05) than the incision 

signal at day 6 where SPCL-WS scaffolds were implanted. 

The VEGFR2 expression at the SPCL-FB implantation sites was higher (p<0.05) than the control 

for all the time points except post-implantation (Fig. 7.2C). This tendency was also observed at 

the incision site but only at days 9 and 13. Nonetheless, the increased expression along the time 



Chapter VII: Starch-based constructs for bone tissue engineering applications 

155 
 

of SPCL-FB implantation was only significantly different (p<0.05) from the time point post-

implantation up to day 3.  

The addition of fibrin sealant to the SPCL-FB scaffolds induced a decrease in VEGFR2 

expression; despite the significantly lower (p<0.05) pre-implantation signal at the SPCL-FB+FS 

implantation sites in comparison to the SPCL-FB, major differences (p<0.05) were detected at 

days 6 and 9. However, as for the SPCL-FB, the increased expression along the time of SPCL-

FB+FS implantation was only significantly different (p<0.05) from the post-implantation to day 3 

(Fig. 7.2C). 
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Figure 7.2:  A) Schematic representation of a transgenic VEGFR2-LUC mouse with the areas considered 

for the capture of the luminescence signal emitted by the transfected cells seeded on the SPCL-based TE 

constructs: I corresponds to incision area; II and III correspond to the left and right implant sites (pockets). 

B) Graphical representation of the luminescence signal detected in the different areas, on the SPCL-WS 

assembled constructs. C) Graphical representation of the luminescence signal detected in the different 

areas, on the SPCL-FB assembled constructs. 

 

When hASCs were added to the SPCL-WS+FS construct, the luminescence pattern detected at 

the implantation sites changed again. However, the VEGFR2 expression was similar at all times 

of SPCL-WS+FS+hASCs implantation in comparison to SPCL-WS+FS except at day 6 in the 

incision site (p<0.05). In addition, along the time of SPCL-WS+FS+hASCs implantation the 

VEGFR2 expression was similar, significantly decreasing (p<0.05) from pre- to post-implantation 

(Fig. 7.2C).  
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Contrarily to what was observed for the SPCL-WS+FS, the addition of hASCs to the SPCL-

FB+FS construct did not induce significant differences in the detected luminescence (Fig. 7.2C). 

However, the decrease from the pre- to the post-implantation time and the subsequent increase 

of the detected signal until day 3 was statistically significant (p<0.05). Once more, the VEGFR2 

expression pattern at the incision region, although at a lower level, was comparable to what was 

observed at the implantations sites (Fig. 7.2C). 

The addition of either VEGF or FGF-2 to the SPCL-WS+FS+hASCs constructs changed the 

pattern of VEGFR2 expression (Fig. 7.2B) but the observed differences were not statistically 

significant except at the incision site, post-implanting the SPCL-WS+FS+hASCs+FGF-2 

constructs (p<0.05) (Fig. 7.2C). However, the expression of VEGFR2 at the SPCL-

WS+FS+hASCs+VEGF implantation site significantly decreased (p<0.05) from the pre- to the 

post-implantation time point and increased (p<0.05) from day 9 to day 13 reaching a significantly 

higher value (p<0.05) in comparison to the post-implantation time point. Apart from the enhanced 

VEGFR2 expression from day 9 to day 13, similar results were obtained along the time of 

implantation of the SPCL-WS+FS+hASCs+FGF-2 constructs.  

In what concerns the incorporation of growth factors (VEGF and FGF-2) into the SPCL-

FB+FS+hASCs constructs a significant decrease (p<0.05) was observed at the end of 

observation, day 13, at the implantation sites for both constructs and at the post-implantation time 

for the SPCL-FB+FS+hASCs+FGF-2 constructs (Fig. 7.2C). At the SPCL-FB+FS+hASCs+FGF-2 

implantation site, the expression of VEGFR2 decreased (p<0.05) from the pre- to the post-

implantation time point and subsequently increased (p<0.05) up to day 3. For both constructs an 

increased (p<0.05) VEGFR2 expression was observed when comparing the post-implantation 

and the end time point of implantation (Fig. 7.2C). 

7.4.2.2  Inflammation and vascularisation 

At the end of the experiment (2 weeks), the subcutaneously implanted tissue engineered 

constructs were explanted, along with the surrounding tissue, for histological and molecular 

biology analysis. 

In terms of inflammatory reaction to the implantation of the TE constructs, the histological 

analysis allowed to observe that for all tested conditions neither the addition of hASCs or fibrin 

sealant from human origin, nor the release of VEGF or FGF-2 from the implanted constructs to 

the implantation site, elicited an exuberant inflammatory or rejection response from the transgenic 

VEGFR2-LUC mice (Fig. 7.3). The observed inflammatory reaction can be considered of 

moderate intensity and characterized by the presence of some polymorphonuclear neutrophils 

(PMNs), mononuclear cells (lymphocytes and macrophages) and some foreign body giant cells 
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(Fig. 7.3). These observations were complemented with the RT-PCR analysis that confirmed the 

expression of IL-4 and IFN-γ, two inflammatory cytokines, for all the tested conditions except 

when only the SPCL scaffolds were implanted (Fig. 7.4). In addition TNF-α expression was 

detected in all the test groups except the controls in which IL-4 and IFN-γ were also not detected. 

In fact in the control animals a residual inflammatory infiltrate, comprising PMNs and 

mononuclear cells was found as a reaction to the created pockets (Fig. 7.3).  

Concerning the vascularisation specific markers, all the tested conditions, including the controls, 

expressed VEGF. Contrarily, VEGF-R1 expression was only detected in the tissues where the 

SPCL-WS+FS+ hASCs+FGF-2, the SPCL-FB +FS+hASCs+VEGF, and the SPCL-

FB+FS+hASCs constructs were implanted (Fig. 7.4).  
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Figure 7.3:  Micrographs obtained from the TE constructs and surrounding tissue explanted 13 days after 

implantation in the transgenic VEGFR2-LUC mice. SPCL-WS+FS+ASCs, SPCL-FB+FS+ASCs, SPCL-

FB+FS+ASCs+VEGF, SPCL-FB+FS+ASCs+FGF-2 and SPCL-FB+FS with lower magnification of 12.5x 

and higher magnification of 200x; SPCL-WS+FS+ASCs+VEGF, SPCL-WS+FS+ASCs+FGF-2, SPCL-

WS+FS, SPCL-WS, SPCL-FB and Pocket (control) with lower magnification of 12,5x and higher 

magnification of 100x. 

 

 

 

Figure 7.4:  Electrophoresis gels of the PCR results showing the expression of inflammation, 

neovascularisation and osteogenic potential specific genes. The gene expression was assessed at the 

end time point of the experiment (2 weeks), on the implanted tissue engineering construct and respective 

surrounding tissue. 

 

7.5 Discussion 

Tissue engineering has been facing impairment of the development of suitable constructs, which 

is to promote the concomitant growing of new blood vessels as the tissue is healing and 

remodelling. Considerable steps have been taken towards new advances by co-culturing 

endothelial cells and osteoblasts [11, 14, 34] or stem cells within 3D matrices [16] or by controlled 

release relevant growth factors from those structures [21, 22] that can simultaneously support cell 

growth and ingrowth [5, 35]. Extensively studied starch-based scaffolds have shown great 

potential for bone tissue engineering not only demonstrated by their capacity to support 

osteogenic differentiation [36] and further bone matrix deposition/mineralization [12], but also to 
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bear the formation of vascular-like structures both in vitro [14, 37, 38] and in vivo [11]. Based on 

these, the main aim of this work was to assemble an improved bone tissue engineering construct, 

composed by starch/polycaprolactone-based scaffolds, angiogenic growth factors (VEGF and 

FGF-2) and hASCs and to assess the effect of each element overVEGFR2 expression. 

A major concern with tissue engineered constructs is the fate and consequent role of the cells 

comprising the construct after transplantation. Cell transfection by lipofection has been shown to 

be a useful tool to trace cells either in an in vitro system [39-41] or in animal models [42, 43]. An 

immunosuppressed mouse model was used to implant the two types of SPCL scaffolds seeded 

with transfected hASCs in order to conclude about the effect of the processing methodology over 

cell fate within the host. 

It is possible to conclude that the different types of methodologies to process the SPCL scaffolds 

do not induce differences on the migration of seeded cells. It was shown that the kinetic profile of 

emitted luminescence by the transfected cells seeded on the scaffolds is quite similar for the 

SPCL-WS and for the SPCL-FB scaffolds.  

As the implants were introduced into the subcutaneous pockets of the nude mice, the transfected 

cells started to migrate from the scaffolds and moved to the dorsum of the animals. This was 

achieved from the observed higher luminescence signal emitted by the transfected cells in the 

dorsum area compared to the implantation areas. This is in accordance with previous works, 

showing an immediate release of ASCs from the substrate (unpublished data). Nevertheless, the 

presence of the scaffold at the implant site may interfere with the luminescence signal detected 

by the software. Therefore, it may be speculated that the luminescence signal detected at the 

implantation sites is not real and it is masked by the presence of the SPCL scaffolds. Since an 

increase of the signal was observed from day 2 after implantation, and a similar kinetics profile is 

noticed both for the implantation sites and for the dorsum of the animals, it means that the cells 

are proliferating in both sites. The decrease on the emitted signal observed from day 6 onward 

indicates that the cells are losing the plasmid, as expected after 2 weeks of transfection 

(unpublished data). 

A VEGFR2-luc transgenic mouse model previously established [32], using the murine VEGFR2 

promoter to direct the expression of the luciferase reporter, was used to assess the expression of 

VEGFR2 under the studied conditions. It is well reported that VEGFR2 mediates most of the 

mitogenic, cell survival, and vascular permeability effects of VEGF [44, 45]. Moreover, as 

VEGFR2 plays an important role in many aspects of blood vessel growth, an in vivo monitoring of 

the VEGFR2 gene expression, with non-invasive techniques was found useful to achieve its real 

time function in angiogenesis [46]. 
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While SPCL scaffolds, seeded with bone marrow mesenchymal cell have clearly proved to be 

suitable for bone tissue engineering applications [8, 12, 36], concomitantly demonstrating that 

support the formation of vascular-like structures [11, 37, 38], the potential of hASCs together with 

these materials was still to be addressed. This study was designed in order to assess the 

influence of hASCs seeded onto the SPCL scaffolds, as well as the incorporation and subsequent 

delivery of VEGF and FGF-2, in vascularisation. In this context, it was possible to achieve 

important cues from the VEGFR2-luc transgenic mouse model with implanted starch-based tissue 

engineering constructs. 

Wound healing involves the induction of pro-inflammatory cytokines, such as IL-6, IL-8 and TNF-

α, and various growth factors necessary for this process [47]. Among those factors is the VEGF 

for endothelial cells [48] and critically involved in angiogenesis, also an important part of wound 

healing [49].  

The presented results shown that all conditions established with the assembled bone TE 

constructs induced the expression of VEGF gene by the tissues hosting the implants, as well as 

the control tissues where nothing was implanted. Although on the control animals none implant 

was placed, the creation of the pocket induced an inflammatory reaction, exactly as in the 

animals where the implants were placed. In both situations, the host tissue had to recover from 

the injury and restore the damaged tissue and associated vasculature. In this sense, it is possible 

to substantiate the expression of VEGF in all conditions, including the controls. 

Higher levels of VEGF-R2 expression were detected in the animals where SPCL-FB scaffolds 

were implanted. At the molecular level, it was shown that when the SPCL scaffolds, either SPCL-

WS or SPCL-FB, were implanted as simple materials, did not elicit the expression of the specific 

markers of inflammation, IL-4, IFN-γ and TNF-α. In addition, VEGF but not VEGFR-1 expression 

was also detected after SPCL-WS and SPCL-FB implantation. The histological analysis also 

confirms a residual inflammatory infiltrate in the vicinity of the SPCL scaffolds. All together these 

results demonstrate that SPCL possess a low inflammatory potential very unusual for a 

biodegradable scaffold, and that the detected VEGFR2 expression in the luminescence 

experiments are certainly related to the produced VEGF since VEGF-R2 is the major receptor for 

that growth factor [50]. However, although it has been reported that inflammatory cells, namely 

macrophages, express VEGF-R1 in response to VEGF stimulation [50-52], in this study was not 

possible to establish this correlation. 

An interesting finding was the lower expression of the VEGFR2 in the SPCL-FB+FS in 

comparison with the SPCL-FB scaffold. This may be due to the incorporation of fibrin sealant 

which might be minimizing an eventual physical aggression of the subcutaneous tissue and 



Chapter VII: Starch-based constructs for bone tissue engineering applications 

165 
 

consequent inflammation with the release of VEGF receptors. Nevertheless, the histological 

features showed only a moderate inflammatory reaction for both conditions. Additionally, the 

molecular analysis showed that the introduction of fibrin sealant, ASCs and growth factors 

enhanced the expression of inflammatory mediators compared with scaffolds themselves. Either 

for short or long term subcutaneous implantations of SPCL-WS and SPCL-FB scaffolds no 

severe inflammatory reaction has been previously observed (chapter 6). 

When the hASCs were added, the expression of VEGFR2 showed to be similar to the SCPL-

based constructs with fibrin sealant. However, at the molecular level, while the VEGF expression 

was detected for all the conditions, the expression of VEGFR1 was only detected for the SPCL-

FB+FS+hASCs construct. A possible explanation for this finding may be the differences on the 

SPCL-FB and SPCL-WS scaffolds, which can be additionally altered by the incorporation and 

interaction of the different components of the construct. 

Conversely, the assembled constructs, by inducing the expression of those pro-inflammatory 

cytokines, showed to have an inflammatory potential. Comparing the histological images with 

these molecular biology results, they do not coincide. This means that, although there is 

molecular information to express the genes of the inflammatory cytokines, the proteins do not 

reach the production, justifying the inexistence of persistent acute inflammation by the histological 

evaluation. 

VEGF and its receptors, among others VEGF-R1 are important factors in the establishment, 

progression and maturation of new blood vessels [53-56]. During normal wound healing [57] 

VEGF expression correlates temporally and spatially with the proliferation of new blood vessels 

[58]. Additionally to VEGF, Fibroblast Growth Factors (FGFs) are homeostatic factors with 

function in tissue repair and response to injury in adult organisms [59]. 

While the incorporation and subsequent release of both VEGF and FGF-2 from the SPCL-WS did 

not induce a significant effect over VEGFR2 expression, the expression of this receptor was 

significantly increased in the SPCL-FB+FS+hASCs+VEGF and SPCL-FB+FS+hASCs+FGF-2 

implantation sites in comparison to unloaded constructs. The VEGFR2 expression was 

significantly higher upon exposition to VEGF or FGF-2. The observed differences may be 

substantiated by the strict relation of those two growth factors with inflammation [57], tissue repair 

and proliferation of new blood vessels [59]. Additionally, the expression of VEGFR2 translates the 

vascularisation status at the implantation sites [50]. Due to previous indications on the behaviour 

of VEGF and FGF-2 on their release [20-22] and effect on VEGFR-2 expression [46], the 

obtained results were expected. 
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7.6 Conclusions 

Taken together, the presented results show that; a) the starch-based scaffolds obtained by 

different processing methodologies are a rather suitable support for human adipose tissue 

derived cells (ASCs); b) the starch-based scaffolds may be used to assemble a complex TE 

construct composed by a fibrin sealant, ASCs and growth factors (VEGF and FGF-2); c) after 2 

weeks of implantation, the assembled TE constructs did not elicit an adverse host reaction, 

showing a moderate inflammatory response typically observed for implanted devices and; d) the 

addition of VEGF and FGF-2 to the TE construct showed to be favourable, at the molecular level, 

for the expression of neovascularisation specific markers.  

In summary, the overall results indicate that the combination of SPCL-WS with fibrin sealant, 

human adipose derived stem cells and FGF-2 seems to be the TE construct with promising 

features for vascularisation of the newly formed tissue and thus, may be considered for further 

studies for bone TE applications. 
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Chapter VIII 

Final Remarks 

 

 

The rational of the work presented in this thesis was to understand the host reaction provoked by 

the implantation of natural-based biomaterials, aimed for skin wound healing and bone 

regeneration, respectively chitosan/soy-based membranes and starch-based scaffolds.  

 

While deeper knowledge was previously gathered by other works regarding the in vitro 

performance of the starch-based scaffolds [1-3], the chitosan/soy-based membranes were rather 

new [4], thus demanding an in vitro analysis prior to the in vivo studies. In a first approach, the 

ability of chitosan/soy-based membranes to activate human inflammatory cells was assessed in 

vitro. The obtained data showed that stimulation potential of the cht/soy membranes towards 

PMNs was low, as indicated by the reduced lysozyme release and ROS production normally 

resulting from the PMNs “respiratory burst”. The in vivo activation of PMNs by the implantation of 

any medical device for tissue engineering purposes is required at controlled levels, since their 

function in wound hound healing precedes the adaptive changes if the tissue recovers from injury 

and returns to normal function. Thus, the low in vitro stimulation of the PMNs induced by these 

cht/soy-based membranes seems to be a good indicator for the development of a normal wound 

healing process, when implanted in vivo, as well as the normal restoration of the tissue function. 

Furthermore, PMNs retained their capacity of activation, and it is important to consider that the 

stimulation and activation of these cells is highly influenced by the type of molecules or mediators 

adsorbed to the surface of materials [5, 6] once they are implanted in vivo. In fact, improved host 

response considering inflammatory cells recruitment and overall inflammatory reaction after 

subcutaneous implantation of chitosan, soybean and cht/soy membranes was observed when 

chitosan was added to soybean. Soybean powders elicited the recruitment of higher numbers of 

inflammatory cells compared to chitosan powders. Thus, soybean powders were considered 

more reactive to the host as compared to the chitosan powders, which elicited leukocyte 

recruitment comparable to the negative control. Additionally soybean isolate protein induced a 

persistent recruitment of all inflammatory cell types in comparison with the chitosan powders, 

since mononuclear cells (macrophages and lymphocytes), the hallmark of a chronic inflammation, 

were extensively present at the latter stage of reaction. Despite the absence of physiologic signs 

of inflammation or infection, the histological analysis of the explants revealed a severe host 

inflammatory reaction. Comparing the soy-based membranes and their denaturated form, it was 
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possible to observe that the reaction to the second was much more intense, including some 

necrosis of the surrounding tissue. The extension of the inflammatory infiltrate was representative 

of an acute persistent reaction characterised by the presence of PMNs at longer implantation 

periods. The higher degradation rate of the denaturated form of the soy-based membranes, in 

comparison to the simplest membrane and subsequent presence of smaller fragments of the 

membrane, might be responsible for the stronger reaction since a higher surface area is available 

for PMNs to respond to. The metabolites secreted by the PMNs in this situation lead to the 

decrease of the physiological pH and to the apoptosis and necrosis of neighbouring cells that was 

evident at later stages of implantation. The addition of chitosan to the soy-based membranes 

improved, as would be expected, the host response which showed the features of a typical 

inflammatory response to implanted materials. These results were to forsee, not only because the 

blends of chitosan and soy were not able to activate in vitro human PMNs, but also because of 

the inflammatory recruitment kinetics after intraperitoneal injection of chitosan and soybean 

powders. All together, these results may assert the influence of chitosan on masking specific soy 

reactive epitopes or even on suppressing leukocyte activation, namely PMNs. The cht/soy-based 

membranes showed the induction of a normal inflammatory reaction and the features 

characterizing this reaction are crucial for the integration of the material, as well as for the 

ongoing process of wound healing and tissue regeneration. This influence, and thus the suitability 

of these membranes for wound dressing were confirmed after application in a partial-thickness 

excision model. The newly developed cht/soy-based membranes produced by solvent casting 

methodology and that had proven to promote low in vitro activation of human PMNs isolated from 

circulating blood, decreased the healing time period of partial-thickness skin wounds in rats. The 

cht/soy-based membranes perform better, in comparison to the negative and positive controls, 

inducing re-epithelialisation.  

In conclusion, chitosan/soy-based membranes showed to improve skin wound healing, enhancing 

the progression of the reaction from an inflammatory process to tissue healing and regeneration, 

in part due to their proved incapability to activate human PMNs in vitro. Hence, in a future 

approach, these cht/soy-based membranes can be considered for further studies of wound 

dressing, including the study of cellular and molecular mechanisms involved in skin wound 

healing in advanced wound healing models, such as excisional skin wounds in pigs. 

 

Starch-based biomaterials have been extensively studied and showed promising features for 

bone tissue engineering (TE) applications [2, 3, 7-10]. However, not too much is known in what 

concerns to the host reaction after in vivo implantation of those natural-based biomaterials. Thus, 
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the main objectives of studying SPCL scaffolds in this thesis were to evaluate the host tissue 

reaction, tissue integration and systemic response elicited after its implantation, as well as to 

understand the influence of the addition of human adipose derived stem cells, fibrin sealant and 

angiogenic factors, on the vascularisation and host reaction after implantation. 

The data showed that SPCL scaffolds produced by two different methodologies, wet spinning 

(SPCL-WS) and fibre-bonding (SPCL-FB) did not induce a severe soft tissue inflammatory 

reaction. This was observed by the low host reaction detected after subcutaneous and 

intramuscular implantations of both types of SPCL scaffolds in rats for 1 and 2 weeks. 

Additionally, the a long-term implantation in the subcutaneous tissue of rats for 8 and 12 weeks 

showed a good integration of the SPCL scaffolds into the host tissue and a pro-wound healing 

cytokine profile expression. Nevertheless, SPCL-WS seemed to be less reactive, particularly 

when the cytokine profile was evaluated, showing an early resolution of the inflammatory process 

compared with the SPCL-FB scaffolds. Additionally, it was shown that the intramuscular 

implantation of the same type of materials induced a slight intense inflammatory response in 

comparison to the SC model, which may indicate that intramuscular implantation is a more 

sensitive model to address the inflammation and immune host response to biomaterial’s 

implantation.  

However, the performance of a tissue engineering construct does not rely only on its scaffolding 

structure but also on their cellular and/or bioactive components. Thus bone TE constructs, 

composed by the SPCL-FB and SPCL-WS scaffolds, human adipose derived stem cells (hASCs), 

fibrin sealant (FS) and key angiogenic growth factors (VEGF and FGF-β) were assembled. The 

purpose of using those factors was to induce bone formation, enhance healing and 

vascularisation of the newly formed tissue, respectively. Murine models of subcutaneous 

implantation were used to evaluate the motility of the seeded cells after implantation and the 

effect of each of the constituents of the TE construct on tissue reaction and new vascularisation. 

The behaviour of transfected hASCs seeded onto the scaffold after transplantation in an 

immunocompromised mouse model was similar for the SPCL-WS and for the SPCL-FB scaffolds. 

As the implants were subcutaneously implanted, the transfected cells started to migrate from the 

scaffolds and moved to the dorsum of the animals. Despite a speculated interference of the 

scaffold over the luminescence signal at the implant site, an increased signal with a similar 

kinetics profile was observed from day 2 onward both at the implantation sites and at the dorsum 

of the animals indicative of cell proliferation and integration within the host tissue. When the 

expression of VEGFR2 was evaluated using a transgenic murine model FVB/N-Tg(VEGF-r2–

luc)Xen mice (VEGFR2-LUC) in which the VEGFR2 promoter directly correlates with the 
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expression of the luciferase reporter it was noticed that at the SPCL-WS implantation sites 

VEGFR2 expression was comparable to the control without any implanted material. Conversely, 

VEGFR2 expression at the SPCL-FB implantation sites was higher than the controls. The 

addition of hASCs to the SPCL scaffolds induced a similar VEGFR2 expression at all times of 

implantation in comparison to SPCL-WS+FS except at day 6 in the incision site. In addition, along 

the time of SPCL-WS+FS+hASCs implantation, the VEGFR2 expression was similar, decreasing 

from pre- to post-implantation. Contrarily to what was observed for the SPCL-WS+FS, the 

addition of hASCs to the SPCL-FB+FS construct did not induce significant differences in the 

detected luminescence. However, the decrease from the pre- to the post-implantation time and 

the subsequent increase of the detected signal until day 3 was significant. Furthermore, the 

VEGFR2 expression pattern at the incision region, although at a lower level, was comparable to 

what was observed at the implantations sites. This was certainly due to the inflammatory process 

kinetic at the incision healing site. While the incorporation and subsequent release of both VEGF 

and FGF-β from the SPCL-WS did not induce a significant effect over VEGFR2 expression, the 

expression of this receptor was significantly increased in the SPCL-FB+FS+hASCs+VEGF and 

SPCL-FB+FS+hASCs+FGF-β implantation sites in comparison to unloaded constructs. The 

VEGFR2 expression was significantly higher upon exposition to VEGF or FGF-β. The observed 

differences may be substantiated by the strict relation of those two growth factors with 

inflammation [11], tissue repair and proliferation of new blood vessels [12]. Additionally, the 

expression of VEGFR2 translates the vascularisation status at the implantation sites [13]. The 

observed inflammatory reaction was considered of moderate intensity and characterized by the 

presence of some polymorphonuclear neutrophils (PMNs), mononuclear cells (lymphocytes and 

macrophages) and some foreign body giant cells. Furthermore, RT-PCR analysis complemented 

these observations by showing the expression of IL-4 and IFN-, two inflammatory cytokines, for 

all the tested conditions except when only the SPCL scaffolds were implanted. These results 

were in accordance with the previous indications of low inflammatory response and good tissue 

integration of the SPCL scaffolds after subcutaneous and intramuscular implantation in rats. In 

addition, TNF- expression was detected in all the test groups except the controls in which IL-4 

and IFN- were also not detected. In fact in the control animals a residual inflammatory infiltrate, 

comprising PMNs and mononuclear cells was found as a reaction to the created pockets. Thus, 

these data showed that after 2 weeks of implantation, the assembled TE constructs did not elicit 

an adverse host reaction, showing a moderate inflammatory response typically observed for 

implanted devices. 
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As a concluding remark, one might say that starch-based scaffolds, processed either by wet 

spinning or fibre bonding technologies, can be integrated in the host tissue without eliciting an 

adverse reaction or provoking any systemic response, which is not typical for other 

biodegradable systems. Furthermore, as SPCL scaffolds were assembled into bone TE 

constructs, they supported hASCs and angiogenic mediators, were well tolerated by the host 

tissue and were able to induce the expression of vascularisation specific markers, without major 

differences between the different processing methodologies. 
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